PROFIBUS: O MEIO FÍSICO

INTRODUÇÃO

O Profibus é um protocolo digital utilizado em sistemas de controle, que permite a conexão com interoperabilidade de diversos equipamentos e fabricantes. Possui uma série de vantagens em relação à tecnologia 4-20 mA, onde resumidamente pode-se citar, dentre outras:

- Fácil cabeamento com redução de custos;
- Simples operação, através da sala de controle;
- Aplicações em área classificadas;
- Altas taxas de comunicação no Profibus-DP;
- Poderosas ferramentas de configuração/parametrização e gerenciamento de ativos;
- Tecnologia aberta e em contínua evolução.

Trata-se de um protocolo padronizado, totalmente aberto, onde sua organização de usuários mantem o desenvolvimento e manutenção da tecnologia, combinando os interesses de usuários e fabricantes. Este padrão é garantido segundo as normas EN 50170 e EN 50254. e foi firmemente estabelecido com a IEC 61158, desde janeiro de 2000.

O Profibus-PA é uma das variantes da tecnologia Profibus, dedicada à área de processos e amplamente utilizada em comunicação digital bidirecional, permitindo a implementação de sistemas de controle de processos tecnologicamente avançados.

O Profibus-PA permite serviços cíclicos e acíclicos. Os serviços cíclicos são utilizados para a transmissão de dados pertinentes às medições e comandos de atuação com informações de valor/status. Os serviços acíclicos são utilizados pelas ferramentas de configuração, manutenção e diagnóstico, durante a operação.

ARQUITETURA DO SISTEMA DE CONTROLE DE PROCESSO

Na prática existem diversos fabricantes de sistemas de controle, assim como várias possibilidades de arquiteturas, mas basicamente deve-se atentar para:

- O número de estações host e estações de engenharia;
- O número de controladores;
- A hierarquia da comunicação;
- As atribuições dos dispositivos e equipamentos de campo aos seus respectivos controladores;
- O método de conexão dos equipamentos de campo;
- As condições envolvendo áreas à prova de explosão, segurança intrínseca, emissões eletromagnéticas, condições ambientais, distribuição de cabeamento, aterramento etc.

A figura 1 mostra uma arquitetura típica, onde se tem o controlador Profibus, estações de engenharia, ferramentas de parametrização, acopladores e outros elementos da rede.

Vejamos a seguir detalhes do meio físico.

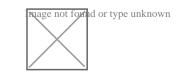


Figura 1 – Arquitetura típica Profibus.

PROFIBUS E O MEIO FÍSICO

No modelo de referência ISO/OSI, a camada 1 define o método de transmissão de dados físico, elétrico e mecânico. Isto inclui o tipo de codificação e o padrão de transmissão utilizado. A camada 1 é chamada de camada física.

O Profibus fornece diferentes versões da camada 1 quanto a tecnologia de transmissão (veja Tabela 1). Todas as versões são baseadas em padrões internacionais e estão declaradas para Profibus em ambas as normas IEC 61158 e IEC 61784.

Tabela 1- Propriedades da família do perfil de comunicação CPF3 (CPF – Communication Profile Families, Profibus).

A aplicação de um sistema de comunicação industrial é amplamente influenciada pela escolha do meio de transmissão disponível. Assim sendo, aos requisitos de uso genérico, tais como alta confiabilidade de transmissão, grandes distâncias a serem cobertas e alta velocidade de transmissão, somam-se as exigências específicas da área automação de processos, tais como operação em área classificada, transmissão de dados e alimentação no mesmo meio físico, dentre outras.

Partindo-se do princípio de que não é possível atender a todos estes requisitos com um único meio de transmissão, existem atualmente três tipos básicos de meio físicos de comunicação disponíveis no Profibus:

- RS485- para uso universal, em especial em sistemas de automação da manufatura;
- IEC 61158-2- para aplicações em sistemas de automação em controle de processo;
- **Fibra Ótica** para aplicações em sistemas que demandam grande imunidade às interferências e grandes distâncias.

Obs: Atualmente, produtos com tecnologia infravermelho e wireless já estão disponíveis.

Links e acopladores são dispositivos para acoplamento entre vários meios de transmissão. Enquanto o termo Acoplador (*Coupler*) aplica-se a dispositivos que implementam o protocolo somente no que refere-se ao meio físico de transmissão, o termo *Link* aplica-se aos dispositivos inteligentes que oferecem maiores opções na operação entre sub-redes.

RS485

O padrão RS485 é a tecnologia de transmissão mais frequentemente encontrada no Profibus. Sua aplicação inclui todas as áreas nas quais uma alta taxa de transmissão, aliada a uma instalação simples e barata, se faz necessária. Um par trançado de cobre blindado com um único par condutor é o suficiente neste caso.

A tecnologia de transmissão RS485 é muito fácil de ser manuseada. O uso de par trançado não requer nenhum conhecimento ou habilidade especial. A topologia, por sua vez, permite a adição e remoção de estações, bem como um *start-up* do tipo passo-a-passo, sem afetar outras estações. Expansões futuras, portanto, podem ser implementadas sem afetar as estações que já se encontram em operação.

Uma nova opção é a possibilidade do RS485 também operar em áreas intrinsecamente seguras (RS485-IS, veja explanação no final desta seção).

Taxas de transmissão entre 9.6 kbits/s e 12 Mbits/s podem ser selecionadas, porém uma única taxa de transmissão é selecionada para todos os dispositivos no barramento, quando o sistema é inicializado. Redes Profibus-DP trocam dados segundo a codificação NRZ (*Non-Return to Zero*), onde o nível lógico do sinal não se altera durante a transmissão de bits 0 e 1. No Profibus, um caractere é formado por 11 bits (1 *start bit*, 8 bits de dados, 1 bit de paridade e 1 *stop bit*). Quando a linha está ociosa, o nível lógico correspondente ao bit 1 é mantido, e só se modifica para o nível 0 quando se inicia um novo *start bit*.

Até 32 estações podem ser conectadas diretamente, sendo que o máximo comprimento de linha permitido depende da taxa de transmissão.

CABEAMENTO

Todos os dispositivos são ligados a uma estrutura de tipo barramento linear. Até 32 estações (mestres ou escravos) podem ser conectadas a um único segmento. O barramento contém um circuito terminador ativo no início e no fim de cada segmento. Para assegurar uma operação livre de erros, ambas as terminações do barramento devem estar sempre ativas, garantindo-se assim potencial pré-determinado de circuito aberto no barramento.

Normalmente estes terminadores encontram-se nos próprios conectores de barramento ou nos dispositivos de campo, acessíveis através de uma *dip-switch*. No caso em que exista a necessidade de se conectar mais de 32 estações, ou no caso em que a distância total entre as estações ultrapassar um determinado limite, devem ser utilizados repetidores (*repeaters*) para interconectar diferentes segmentos do barramento.

A tabela 2 indica a pinagem completa em conectores Profibus:

Tabela 2 - Pinagem em conectores SUB D de 9 pinos.

A blindagem do cabo deve ser conectada a cada dispositivo Profibus-DP para prevenir o acoplamento de ruídos eletromagnéticos no sinal. Cada estação escrava deve possuir, portanto, um conector fêmea DB de 9 pinos e fornecer para a linha os potenciais de 5V (VP) e DGND através dos pinos 6 e 5, de forma a ser adequadaà operação dos terminadores de linha.

O sinal 5V (VP) deve ser capaz de entregar no mínimo 10mA para alimentar os terminadores de linha, que podem estar fisicamente localizados no conector (usualmente) ou no próprio dispositivo.

Figura 2 – Conector Profibus-DP DB9.

No caso de redes com taxas de comunicação superiores a 1.5 Mbits/s, a seguinte configuração de terminação deve ser utilizada para compensar reflexões de sinal causadas pela carga capacitiva das estações:

Figura 3 – Ligação de conectores e indutores na rede Profibus-DP.

As características desejáveis de um cabo Profibus-DP são:

• Área condutora: 0.34 mm2 (AWG 22);

• Impedância: 35 a 165 (nominal 150) nas frequências de 3 a 20 MHz;

• Capacitância: < 30 pF/m;

• Resistência de Loop: < 110 /km;

• Para o cabo tipo A, a maior distância é 1200 m.

Baud Rate (kbit/s)	Tronco Máximo (m)	Spur Máximo (m)	Máxima Expansão (m)
9,6	500,0	500,0	10000
19,2	500,0	500,0	10000
93,75	900,0	100,0	10000
187,5	967,0	33,0	10000
500,0	380,0	20,0	4000
1500,0	193,4	6,6	2000
3000,0	100,0	0,0	1000
6000,0	100,0	0,0	1000
12000,0	100,0	0,0	1000

Tabela 3 – Taxa de transmissão e alcance para cabo tipo A.

A capacitância típica de um dispositivo Profibus-DP conectado (conector, *driver* RS485, componentes etc.) é de 15 pF a 25 pF. Se um conector alternativo ao DB9 fêmea for utilizado, o fabricante deverá garantir que os níveis de reflexão não extrapolem os limites definidos por norma. Cabos e conectores para Profibus são oferecidos por uma extensa gama de fabricantes.

Durante a instalação, observe atentamente a polaridade dos sinais (positiva e negativa) de dados (pinos 3 e 8). O uso da blindagem é absolutamente essencial para se obter alta imunidade contra interferências eletromagnéticas. A blindagem por sua vez deve ser conectada ao sistema de aterramento em ambos os lados através de bornes de aterramento adequados.

Adicionalmente recomenda-se que os cabos de comunicação sejam mantidos separados dos cabos de alta tensão. O uso de derivação deve ser evitado para taxas de transmissão acima de 1,5 Mbits/s. Os conectores disponíveis no mercado hoje permitem que o cabo do barramento entre e saia diretamente no conector, possibilitando a um dispositivo ser conectado e desconectado da rede sem interromper a comunicação.

Nota-se que quando problemas ocorrem em uma rede Profibus, cerca de 90% dos casos são provocados por incorreta ligação e/ou instalação. Estes problemas podem ser facilmente solucionados com o uso de equipamentos de teste, os quais detectam falhas nas conexões.

É possível conectar até 126 estações em um sistema Profibus. Para ser capaz de operar com este número de estações, o sistema deve ser dividido em segmentos individuais, conectados por repetidores. Um repetidor, estação escrava, processa o sinal com a finalidade de identificar a comunicação entre estações em segmentos distintos.

Em cada segmento podem se conectar até 32 estações, inclusive o repetidor. É possível configurar segmentos sem estações, de forma a cobrir longas distâncias. Com o uso de fibras óticas, é possível que estações escravos se distanciem em torno de alguns quilômetros. A Vivace disponibiliza um repetidor ótico para Profibus-PA.

Figura 4 – Repetidores, terminadores e link óticos.

PADRÃO RS485-IS

Houve uma grande demanda entre os usuários no apoio ao uso de RS485 com suas taxas de transmissão rápidas em áreas intrinsecamente seguras. O PNO formulou uma diretriz para a configuração de soluções RS485 em áreas intrinsecamente seguras com simples troca de dispositivo.

A especificação da interface detalha os níveis para corrente e tensão que devem ser aderidas por todas as estações para assegurar funcionamento seguro durante a operação. Um circuito elétrico permite a máxima corrente a um nível de tensão especificado. Ao conectar fontes ativas, a soma das correntes de todas as estações não deve exceder a máxima corrente permitida.

Uma inovação do conceito RS485-IS é que, ao contrário do modelo FISCO (veja adiante), que somente tem uma fonte intrinsecamente segura, todas as estações agora representam fontes ativas. As contínuas investigações da agência de teste nos levam a esperar que seja possível conectar até 32 estações ao barramento intrinsecamente seguro.

A especificação dos detalhes da interface e os níveis para corrente e tensão, que precisam ser aderidos para todas as estações, devem assegurar um funcionamento seguro durante a operação.

Vejamos algumas características:

- Áreas perigosas (Ex i)
 - RS485-IS: cada estação representa fontes ativas;
 - Tensão de saída máxima (Uo) = 4.2V;

- \circ L/R < 15 μ H/ (Cabo);
- \circ Io = 4.8A;
- o Equipamentos, Couplers, Links e Terminadores devem atender à classificação;
- A máxima corrente de um equipamento DP-IS é 4.2V/32 = 0.149A;
- o A corrente restante de 32 mA é reservada para os 2 BTs ativos;
- A resistência limitante da corrente vale 4.2/0.149 = 28.3;
- o Máximo baud rate: 1.5MBits/s.

A figura 5 detalha a terminação para a RS485-IS:

Figura 5 – Terminador RS485-IS.

Para detalhes de *shield* e aterramento, veja a figura 6.

Figura 6 – *Shield* e aterramento no RS485-IS.

Em resumo, o que devemos verificar em termos de RS485-IS:

- Os manuais de cada dispositivo estão de acordo com PTB-Mitteilungen/1/;
- Todos os dispositivos estão de acordo com os guias do PNO (Certificado);
- O cabo utilizado está de acordo com as especificações do cabo tipo A(IEC 61158/IEC61784 /3/) (L', C' and R');
- O cabo atende às regulações à prova de explosão (EN 50014 /19/, EN 50020 /5/ e EN 60079-14 /7/, em termos de instalação, diâmetro mínimo do condutor etc);
- A máxima corrente de cada dispositivo DP-IS é <= 0.149A e que a corrente para cada BT é <= 16mA;
- O número máximo de dispositivos é 32 por segmento;
- A tensão de saída máxima é (Uo) = 4.2V;
- $L/R < 15\mu H/$ (Cabo);
- Io \leq 4.8A;
- Máximo baud rate: 1.5 Mbits/s;
- A distância máxima em função do baud rate.

Para maiores detalhes consulte a documentação da Profibus International.

MEIO DE TRANSMISSÃO IEC 61158-2

O Profibus-PA é a solução Profibus que atende os requisitos da automação de processos, onde se tem a conexão de sistemas de automação e sistemas de controle de processo com equipamentos de campo, tais como: transmissores de pressão, temperatura, conversores, posicionadores, dentre outros. Pode ser usada em substituição ao padrão 4 a 20 mA.

Existem vantagens potenciais da utilização dessa tecnologia, onde resumidamente destacam-se as vantagens funcionais (transmissão de informações confiáveis, tratamento de status das variáveis, sistema de segurança em caso de falha, equipamentos com capacidades de auto-diagnóstico, faixa de trabalho dos equipamentos, alta resolução nas medições, integração com controle discreto em alta velocidade, aplicações em qualquer segmento, dentre outras).

Além dos benefícios econômicos pertinentes às instalações (redução de até 40% em alguns casos, em relação aos sistemas convencionais), custos de manutenção (redução de até 25% em alguns casos, em relação aos sistemas convencionais) e menor tempo de *startup*, oferece ainda um aumento significativo em funcionalidade e segurança.

O Profibus-PA permite a medição e controle por uma linha a dois fios simples, podendo ainda alimentar os equipamentos de campo em áreas intrinsecamente seguras. Além disso, possibilita a manutenção e conexão/desconexão de equipamentos até mesmo durante a operação, sem interferir em outras estações em áreas potencialmente explosivas.

O Profibus-PA foi desenvolvido em cooperação com os usuários da Indústria de Controle e Processo (NAMUR), satisfazendo as exigências especiais dessa área de aplicação:

- Perfil original da aplicação para a automação do processo e interoperabilidade dos equipamentos de campo dos diferentes fabricantes;
- Adição e remoção de estações de barramentos mesmo em áreas intrinsecamente seguras, sem influência para outras estações;
- Comunicação transparente através dos acopladores de segmento entre o barramento de automação do processo Profibus-PA e o barramento de automação industrial Profibus-DP;
- Alimentação e transmissão de dados sobre o mesmo par de fios baseado na tecnologia IEC 61158-2;
- Uso em áreas potencialmente explosivas com blindagem explosiva tipo "intrinsecamente segura" ou "sem segurança intrínseca".

A transmissão síncrona, em conformidade à norma IEC 61158-2, possui uma taxa de transmissão definida em 31,25 Kbits/s, e veio a atender os requisitos das indústrias químicas e petroquímicas. Permite, além de segurança intrínseca, que os dispositivos de campo sejam energizados pelo próprio barramento, possibilitando que a tecnologia seja utilizada em áreas classificadas.

As opções e limites do Profibus com tecnologia de transmissão IEC 61158-2 para uso em áreas potencialmente explosivas são definidas pelo modelo FISCO (*Fieldbus Intrinsically Safe Concept*). O modelo FISCO foi desenvolvido pelo instituto alemão PTB - *Physikalisch Technische Bundesanstalt* (Instituto Tecnológico de Física) e é hoje internacionalmente reconhecido como o modelo básico para barramentos em áreas classificadas.

A transmissão é frequentemente referida como H1 e se baseia nos seguintes princípios:

- Cada segmento possui somente uma fonte de energia, a fonte de alimentação;
- Alimentação não é fornecida ao barramento enquanto uma estação está enviando um sinal;

- Os dispositivos de campo consomem uma corrente básica constante quando em estado de repouso;
- Os dispositivos de campo agem como consumidores passivos de corrente (sink);
- Uma terminação passiva de linha é necessária, em ambos os fins da linha principal do barramento;
- Topologias linear, árvore e estrela são permitidas.

No caso da modulação, supõe-se uma corrente básica de pelo menos 10 mA consumida por cada dispositivo no barramento. Através da energização do barramento, esta corrente alimenta os dispositivos de campo e os sinais de comunicação são gerados pelo dispositivo, que os enviará, por modulação de + /- 9 mA, sobre a corrente básica.

Transmissão de Dados	Digital, sincronizado a bit, código Manchester
Taxa de Transmissão	31,25 kbits/s, modo tensão
Segurança de Dados	Preâmbulo, start e end limiter e FSC (frame check sequence)
Cabos	Par trançado blindado
Alimentação	Via barramento ou externa (9-32 Vdc)
Classe Proteção à Explosão	Segurança Intrínseca (Eex ia/ib) e invólucro (Eex d/m/p/q)
Topologia	Linha ou árvore, ou combinadas.
Número de Estações	Até 32 estações por segmento, máximo de 126
Distância Máxima sem repetidor	1900 m (Cabo tipo A)
Repetidores	Até 4 repetidores

Tabela 4 - Características da IEC 61158-2.

Para operar uma rede Profibus em área classificada é necessário que todos os componentes utilizados na área classificada sejam aprovados e certificados de acordo com o modelo FISCO e IEC 61158-2 por organismos certificadores autorizados, tais como PTB, BVS (Alemanha), CEPEL, UL, FM (EUA).

Se todos os componentes utilizados forem certificados e as regras para seleção da fonte de alimentação, comprimento de cabo e terminadores forem observadas, então nenhum tipo de aprovação adicional do sistema será requerida para o comissionamento da rede Profibus.

FISCO

- R' = 15 ... 150 Ohm/km;
- $L' = 0.4 \dots 1 \text{ mH/km};$
- C' = 80 ... 200 nF/km.
- Cabo tipo A = 0,8 mm2 (AWG18)
- Terminadores:
 - \circ R = 90 ... 100 Ohms

O conceito FISCO foi otimizado para que seja permitido um número maior de equipamentos de campo, de acordo com o comprimento do barramento, levando-se em conta a variação das características do cabo (R', L' e C') e terminadores, atendendo a categorias e grupos de gases com uma simples avaliação da instalação envolvendo segurança intrínseca.

Figura 7- Exemplo de sinal Profibus-PA em modo tensão.

Com isto, aumentou-se a capacidade de corrente por segmento, facilitando a avaliação pelo usuário. Além disso, ao adquirir produtos certificados, o usuário não precisa preocupar-se mais com cálculos, mesmo em substituição durante a operação.

A transmissão de um equipamento tipicamente fornece 10 mA a 31,25 kbit/s em uma carga equivalente de 50 , criando um sinal de tensão modulado de 750 mV a 1000mV pico a pico. A fonte de alimentação deve fornecer de 9 a 32 Vdc, porém em aplicações seguras (IS) deve-se atender os requisitos das barreiras de segurança intrínseca.

O comprimento total do cabeamento é a somatória do tamanho do *trunk* (barramento principal) e todos os *spurs* (derivações maiores que 1m), sendo que o cabo tipo A deve possuir, no máximo, 1900 m em áreas não-seguras. Em áreas seguras deve possuir, no máximo, 1000 m com o cabo tipo A e os *spurs* não devem exceder 30 m.

INSTRUÇÕES DE INSTALAÇÃO PARA O IEC 61158-2

Normalmente, na sala de controle estão localizados os sistemas de controle de processo, bem como dispositivos de monitoração e operação interconectados através do padrão RS485. No campo, acopladores (*couplers*) ou *links* adaptam os sinais do segmento RS485 aos sinais do segmento IEC 61158-2. Eles também fornecem a corrente para alimentação remota dos dispositivos de campo. A fonte de alimentação limita a corrente e tensão no segmento IEC 61158-2.

Os acopladores de segmento (*couplers*) são conversores de sinal que adaptam os sinais RS485 ao nível do sinal IEC 61158-2. Do ponto de vista do protocolo os acopladores são transparentes. Se acopladores de segmento são utilizados, a velocidade do segmento RS485 ficará limitada no máximo a 45,45 kbit/s ou 93,75 kbit/s, ou ainda até 12 Mbit/s em se tratando de *couplers* de alta velocidade.

Os *links*, por sua vez, possuem sua própria inteligência intrínseca. Eles tornam todos os dispositivos conectados ao segmento IEC 61158-2 em um único dispositivo escravo no segmento RS485. Neste caso não existe limitação de velocidade no segmento RS485, o que significa que é possível implementar redes rápidas, por exemplo, para funções de controle, incluindo dispositivos de campo conectados em IEC 61158-2. Além disso, aumentam a capacidade de endereçamento.

A rede Profibus-PA permite estruturas em árvore ou linha, ou ainda uma combinação das duas. A combinação geralmente otimiza o comprimento do *bus* e permite a adaptação de um sistema eventualmente existente.

Cabo	Par trançado blindado
Área do Condutor	0,8 mm2 (AWG 18)
Resistência de Loop	44 Ohms/Km
Impedância a 31.25 kHz	100 Ohms +/-20%
Atenuação a 39 kHz	3 dB/Km
Capacitância Assimétrica	2 nF/Km

Tabela 5 - Especificação do cabo para IEC 61158-2.

Em uma estrutura linear, os equipamentos de campos são conectados ao cabo principal através de conectores do tipo T ou das chamadas caixas de junções. A estrutura em árvore pode ser comparada à técnica clássica de instalação em campo. O cabo multivias pode ser substituído pelo par trançado do barramento. O painel de distribuição continua a ser utilizado para a conexão dos dispositivos de campo e para a instalação dos terminadores de barramento. Quando uma estrutura em árvore é utilizada, todos os dispositivos de campo conectados ao segmento de rede são interligados em paralelo ao distribuidor.

Independentemente da topologia utilizada, o comprimento da derivação da ligação deverá ser considerado no cálculo do comprimento total do segmento. Uma derivação não deve ultrapassar 30m em aplicações intrinsecamente seguras.

Um par de fios blindados é utilizado como meio de transmissão. Ambas as terminações do cabo devem possuir um terminador passivo de linha, que consiste em um elemento RC (um resistor em série de 100 Ohm e um capacitor de 1 µF). Tanto os *couplers* quanto os *links* podem possuir o terminador de barramento integrados. O número de estações que podem ser conectadas a um segmento é limitado a 32. Este número pode ser mais reduzido em função do tipo de classe de proteção a explosões.

Em redes intrinsecamente seguras, tanto a tensão máxima quanto a corrente máxima de alimentação são especificadas dentro de limites claramente definidos. Observe que, mesmo nos casos em que a segurança intrínseca não é utilizada, a potência da fonte de alimentação é limitada.

Tipo	Área de Aplicação	Alimentação	Corrente Máxima	Potência Máxima	No. Típico de Estações
I	EEX ia/ib IIC	13,5 V	110 mA	1,8 W	8
II	EEx ib IIC	13,5 V	110 mA	1,8 W	8
III	Eex ib IIB	13,5 V	250 mA	4,2 W	22
IV	Não intrinsecamente seguro	24,0 V	500 mA	12,0 W	32

Importante: Esta especificação é baseada em uma corrente de consumo de 10 mA por equipamento de campo Profibus-PA.

Tabela 6 - Alimentação padrão.

De modo geral, para determinar o comprimento máximo do barramento, calcula-se a corrente consumida pelos dispositivos de campo, seleciona-se uma unidade de alimentação, conforme a tabela 6, e determina-se o comprimento para o tipo de cabo selecionado conforme a tabela 7.

A corrente necessária é obtida da soma das correntes básicas dos dispositivos de campo do segmento selecionado, somada à uma reserva de corrente de 9 mA por segmento, destinado para a operação do FDE

(Corrente consumida pelo equipamento quando em falha). O FDE evita que dispositivos defeituosos bloqueiem o barramento permanentemente.

		Tipo I	Tipo II	Tipo III	Tipo IV	Tipo IV	Tipo IV
Tensão	V	13,5	13,5	13,5	24	24	24
Soma das correntes necessárias	mA	£110	£110	£250	£110	£250	£500
Comprimento da linha para 0.8 mm2	m	£900	£900	£400	£1900	£1300	£650
Comprimento da linha para 1.5 mm2	m	£1000	£1500	£500	£1900	£1900	£1900

Tabela 7 - Comprimentos de linha para IEC 61158-2.

A conexão em um barramento intrinsecamente seguro com equipamentos de campo alimentados pelo próprio barramento e equipamentos alimentados externamente é possível, desde que os dispositivos alimentados externamente estejam equipados com isolamento apropriado de acordo com EN 50020. Deve ser considerada, entretanto, no cálculo da corrente total, a corrente que o dispositivo com alimentação externa consome do barramento.

TIPOS DE CABO RECOMENDADOS PARA PROFIBUS-PA

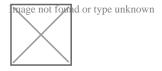
A IEC 61158-2 determina que o meio físico do Profibus-PA deve ser um par de fios trançados. As propriedades de um barramento de campo são determinadas pelas condições elétricas do cabo utilizado. Embora a IEC 61158-2 não especifique tecnicamente o tipo do cabo, o cabo tipo A é altamente recomendado a fim de garantir as melhores condições de comunicação e distâncias envolvidas.

	Tipo A	Tipo B	Tipo C	Tipo D
	Don tuon oo do oom	Um ou mais pares	Diversos pares	Diversos pares
Descrição do Cabo	Par trançado com Shield	trançados total	trançados sem	não-trançados,
	Snieia	com <i>Shield</i>	Shield	sem <i>Shield</i>
Área de Seção do	0,8 mm2 (AWG	0,32 mm2 (AWG	0,13 mm2 (AWG	0,25 mm2
Condutor Nominal	18)	22)	26)	(AWG 16)
Máxima Resistência DC (44 /Km	112 /Km	264 /Km	40 /Km
loop)	44 / KIII	112/KIII	204 / KIII	40 / KIII
Impedância Característica	100 ± 20%	100 ± 30%	**	**
a 31.25 kHz	100 ± 2070	100 ± 30%		
Máxima Atenuação a 39	3 dB/Km	5 dB/Km	8 dB/Km	8 dB/Km
kHz	S ub/Kiii	J ub/Kiii	o ub/Kiii	O UD/KIII
Máxima Capacitância	2 nF/Km	2 nF/Km	**	**
Desbalanceada	Z III / KIII	Z III / KIII		
Distorção de Atraso de	1,7 μs/Km	**	**	**
Grupo (7.9 a 39 kHz)	1,7 μ8/ΙΧΙΙΙ			
Superfície Coberta pelo	90%	**		
Shield	70 /0			

Recomendação para				
Extensão de Rede	1900 m	1200 m	400 m	200 m
(incluindo <i>spurs</i>)				

Tabela 8 – Características dos diversos cabos utilizados em Profibus-PA.

Apresenta em detalhes as especificações dos diversos cabos a 25 °C. Vale lembrar que a maioria dos fabricantes de cabos recomendam a temperatura de operação entre -40 °C e +60 °C. É necessário verificar os pontos críticos de temperatura por onde o cabeamento é passado e se o cabo escolhido é adequado para tal temperatura. A resistência do cabo tipo A de 22 /Km é válida a 25 °C. Por exemplo, a resistência do cabo tipo A a 50 °C é 24.58 /Km. Isso deve ser levado em conta em países quentes, como o Brasil.


COMPRIMENTO TOTAL DO CABO, REGRAS DE DISTRIBUIÇÃO E INSTALAÇÃO

O comprimento total do cabo Profibus-PA deve ser totalizado desde a saída do ponto de conversão DP/PA até o ponto mais distante do segmento, considerando as derivações. Vale lembrar que braços menores que 1 m não entram neste cálculo.

O comprimento total do cabeamento é a somatória do tamanho do *trunk*(barramento principal) e todos os *spurs*(derivações maiores que 1 m), sendo que, com cabo do tipo A, deve ser no máximo 1900 m, em áreas não-seguras. Em áreas seguras com cabo tipo A, pode chegar, no máximo, a 1000 m, considerando que os *spurs* não podem exceder 30 m.

Em termos de instalação e distribuição, é recomendado evitar *splice*, ou seja, qualquer parte da rede que tenha um meio condutor especificado e um comprimento descontínuo menor que 1 m, como por exemplo: remoção de blindagem, troca do diâmetro do fio, conexão a terminais nus, etc. Em redes com comprimento total maior que 400 m, a somatória dos comprimentos de todos os *splices* não deve ultrapassar 2% do comprimento total. Em comprimentos menores que 400 m, não deve exceder 8 m.

O comprimento máximo de um segmento PA, quando se utiliza cabo de tipos diferentes, fica limitado de acordo com a seguinte fórmula:

Onde:

- LA: Comprimento do cabo A;
- *LB*: Comprimento do cabo B;
- LC: Comprimento do cabo C;
- LD: Comprimento do cabo D;
- LA max: Comprimento máximo permitido com o cabo A (1900 m);
- LB max: Comprimento máximo permitido com o cabo B (1200 m);

- LC max: Comprimento máximo permitido com o cabo C (400 m);
- LD max: Comprimento máximo permitido com o cabo D (200 m).

Com relação aos braços (*spurs*), é necessário estar atento aos comprimentos dos mesmos. A quantidade de equipamentos PA (devem ser considerados os repetidores, quando houver) deve estar de acordo com a Tabela 9. Em áreas classificadas o *spur* máximo deve ser de 30 m.

Total de equipamentos PA por segmento coupler DP/PA	com	Comprimento do spur (m) com	Comprimento do spur (m) com 03 equipamentos	Comprimento do spur (m) com 04 equipamentos	Comprimento considerando a quantidade máxima de spurs (m)
1-12	120	90	60	30	12 x 120 =1440
13-14	90	60	30	1	14 x 90 = 1260
15-18	60	30	1	1	18 x 60 = 1080
19-24	30	1	1	1	24 x 30 = 720
25-32	1	1	1	1	1 x 32 = 32

Tabela 9 - Spur x número de equipamentos PA.

Obs: O limite de capacitância do cabo deve ser considerado desde que o efeito no sinal de um *spur* seja menor que 300m e se assemelha a um capacitor. Na ausência de dados do fabricante do cabo, um valor de 0.15 nF/m pode ser utilizado para cabos Profibus.

Onde:

- CT: Capacitância total em nF;
- Ls: Comprimento do spur em m;
- Cs: Capacitância do fio por segmento em nF (padrão: 0,15);
- Cd: Capacitância do equipamento PA.

A atenuação associada a esta capacitância é 0,035 dB/nF. Sendo assim, a atenuação total vale:

Sendo que 14 dB é o que permitirá o mínimo de sinal necessário para haver condições de detectá-lo com integridade.

Existem algumas regras que devem ser seguidas, em termos do cabeamento e da separação entre outros cabos, quer sejam de sinais ou de potência. Deve-se preferencialmente utilizar bandejas ou calhas metálicas, observando as distâncias conforme a tabela 10.

Nunca se deve passar o cabo Profibus-PA ao lado de linhas de alta potência, pois a indução é uma fonte de ruído e pode afetar o sinal de comunicação. Além disso, o sinal Profibus deve ser isolado de fontes de ruídos, como cabos de força, motores e inversores de frequência.

Recomenda-se colocar o cabo Profibus em guias e calhas separadas. O ideal é utilizar canaletas de alumínio, onde se tem a blindagem eletromagnética externa e interna. As correntes de *Foucault* são praticamente imunes, devido à boa condutibilidade elétrica do alumínio. Convém lembrar que o cruzamento entre os cabos deve ser feito em ângulo de 90°.

	comunicação		Cabos com e sem <i>shield</i> > 400Vac	Qualquer cabo sujeito à exposição de raios
Cabo de comunicação Profibus-PA		10 cm	20 cm	50 cm
Cabos com e sem shield	10 cm		10 cm	50 cm
60 Vdc ou 25 Vac e < 400 Vac				
Cabos com e sem shield: > 400 Vac	20 cm	10 cm		50 cm
Qualquer cabo sujeito à exposição de raios	50 cm	50 cm	50 cm	

Tabela 10 – Distâncias mínimas de separação entre cabeamentos.

TERMINADORES DA REDE PROFIBUS-PA

Dois terminadores de barramento devem estar conectados na rede Profibus-PA, sendo um na saída do *coupler* DP/PA e o outro no último equipamento (normalmente o mais distante do *coupler*), dependendo da topologia adotada.

Sehouver uma caixa de junção no final do tronco principal com vários braços (*spurs*)na distribuição do cabeamento, o terminador de campo deverá ser colocado neste ponto, o que facilitará a manutenção no momento de remover equipamentos.

É preciso certificar-se da correta conexão do terminador, lembrando que a falta de terminadores proporcionam a intermitência da comunicação, uma vez que não há casamento de impedância e há aumento da reflexão de sinal.

A falta de um terminador ou sua conexão em ponto incorreto também degrada o sinal, uma vez que parte do

cabeamento funcionará como uma antena. Esta ausência pode aumentar em mais de 70% o sinal e um terminador a mais pode atenuar o sinal em até 30%. Atenuação e intermitência podem gerar falhas de comunicação.

O terminador da rede PA é composto de um resistor de $100 \pm 2\%$ e um capacitor de 1μ F $\pm 20\%$ em série.

Figura 8 – Formas de onda típicas do Profibus-PA, de acordo com a terminação.

SUPRESSOR DE TRANSIENTES

Toda vez que houver uma distância efetiva maior que 100 m na horizontal ou 10 m na vertical entre dois pontos aterrados, recomenda-se o uso de protetores de transientes, no ponto inicial e final da medição. Na prática, na horizontal, entre 50 e 100 m recomenda-se o seu uso. Esta regra também deve ser aplicada para o Profibus-DP.

É indicado instalar o protetor de transiente imediatamente após o *coupler* DP/PA, antes de cada equipamento e mesmo na caixa de junção. Em áreas classificadas, recomenda-se o uso de protetores certificados.

FONTE DE ALIMENTAÇÃO E SINAL DE COMUNICAÇÃO PROFIBUS-PA

O consumo de energia varia de um equipamento para outro, assim como de fabricante para fabricante. É importante que a resistência do cabeamento não seja muito alta, a fim de não gerar uma queda de tensão ao longo do cabeamento. Para manter a resistência baixa são necessárias boas conexões e junções.

Em termos de sinal de alimentação, consideram-se como valores aceitáveis:

12 a 32 Vdc na saída do coupler DP/PA (depende do fabricante do <i>coupler</i>)				
Ripple (r, mv)		Sinal de comuni	cação (c, mVpp)	
r < 25	excelente	750 < c < 1000	Excelente.	
25 < r < 50	bom, ok	c > 1000	Muito alto, pode ser que tem um terminador a menos.	
50 < r < 100	marginal	c > 1500	Sem terminação.	
> 100	não aceitável	c < 250	Excesso de terminação ou baixa isolação.	

Tabela 11 – Valores de ripple e amplitude do sinal de comunicação Profibus-PA.

Algumas barreiras e protetores de segmento (*spur guard* ou *segment protector*) possuem uma alta impedância em série e podem resultar em sinais até 2000 mV, ainda assim permitindo uma operação adequada.

Alguns equipamentos têm polaridade, outros não, por isso é muito importante assegurar-seda correta conexão do barramento Profibus-PA aos equipamentos.

SHIELD E ATERRAMENTO

Ao considerar a questão de *shield* e aterramento em barramentos de campo, deve-se levar em consideração:

- Compatibilidade eletromagnética (EMC);
 - Proteção contra explosão;
 - Proteção de pessoas.

De acordo com a IEC61158-2, aterrar significa estar permanentemente conectado ao terra através de uma impedância suficientemente baixa e com capacidade de condução suficiente para prevenir qualquer tensão que possa resultar em danos de equipamentos ou pessoas. Linhas de tensão com 0 Volt devem ser conectadas ao terra e galvanicamente isoladas do barramento Profibus. O propósito de se aterrar o *shield* é evitar ruídos de alta frequência.

Preferencialmente, o *shield* deve ser aterrado em dois pontos, no início e final de barramento, desde que não haja diferença de potencial entre estes pontos, permitindo a existência e caminhos a corrente de *loop*. Na prática, quando esta diferença existe, recomenda-se aterrar o *shield*somente em um ponto, ou seja, na fonte de alimentação ou na barreira de segurança intrínseca. Deve-se assegurar a continuidade da blindagem do cabo em mais do que 90% do comprimento total do cabo.

O *shield* deve cobrir completamente os circuitos elétricos através dos conectores, acopladores, *splices*, caixas de distribuição e junção.Nunca deve-se utilizar o *shield* como condutor de sinal. É preciso verificar a continuidade do *shield* até o último equipamento PA do segmento, analisando a conexão e acabamento.

Em áreas classificadas, quando uma equalização de potencial entre a área segura e área perigosa não for possível, o *shield* deverá ser conectado diretamente ao terra (*equipotencial bonding system*) somente no lado da área perigosa. Na área segura, o *shield* deverá ser conectado através de um acoplamento capacitivo (capacitor preferencialmente cerâmico, com dielétrico sólido, C<= 10nF, tensão de isolação >= 1,5kV).

Figura 9 – Combinação ideal de shield e aterramento.

Figura 10 – Aterramento capacitivo.

A IEC 61158-2 recomenda que se tenha a isolação completa. Este método é utilizado principalmente nos Estados Unidos e na Inglaterra. Neste caso, o *shield* é isolado de todos os terras, a não ser o ponto de terra do negativo da fonte ou da barreira de segurança intrínseca do lado seguro. O *shield* tem continuidade desde a saída do *coupler* DP/PA, passando pelas caixas de junções e distribuições e chegando até os equipamentos.

As carcaças dos equipamentos são aterradas individualmente do lado não seguro. Este método tem a

desvantagem de não proteger os sinais totalmente da alta frequência e, dependendo da topologia e comprimento dos cabos, podendo gerar intermitência na comunicação. Recomenda-se, nestes casos, o uso de canaletas metálicas.

Outra forma complementar à primeira, seria ainda aterrar as caixas de junções e as carcaças dos equipamentos em uma linha de equipotencial de terra, do lado não seguro. Os terras do lado não seguro com o lado seguro são separados.

A condição de aterramento múltiplo também é comum, onde se tem uma proteção mais efetiva às condições de alta frequência e ruídos eletromagnéticos. Este método é preferencialmente adotado na Alemanha e em alguns países da Europa. Nele, o *shield* é aterrado no ponto de terra do negativo da fonte ou da barreira de segurança intrínseca do lado seguro e, além disso, no terra das caixas de junções e nas carcaças dos equipamentos, sendo estas também aterradas pontualmente, no lado não seguro. Outra condição seria complementar a esta, porém os terras seriam aterrados em conjunto em uma linha equipotencial de terra, unindo o lado não seguro ao lado seguro.

Para mais detalhes, deve-se sempre consultar as normas de segurança local. Recomenda-se utilizar a IEC 60079-14 como referência em aplicações em áreas classificadas.

FIBRA ÓTICA

Algumas condições de aplicações de rede de campo impõem restrições à tecnologia de transmissão limitada por fios, como em ambientes com alta interferência eletromagnética ou quando grandes distâncias necessitam ser alcançadas. A transmissão por fibra ótica sobre condutores óticos (FOC ou *Fiber-Optic Cable*) é apropriada nesses casos.

A orientação Profibus 2022 para a transmissão em fibra ótica especifica a tecnologia disponível para este propósito. As especificações foram definidas com grande critério e cuidado a fim de possibilitar a integração segura dos dispositivos Profibus existentes na rede de fibra ótica, sem a necessidade de alterar o comportamento do protocolo Profibus (camada 1), assegurando a compatibilidade retroativa com instalações Profibus pré-existentes.

Os tipos de fibra ótica suportados são mostrados na tabela 12. As características de transmissão suportam topologias do tipo estrela, anel ou lineares.Nos casos mais simples, uma rede de fibra ótica é implementada utilizando-se conversores elétrico-ótico (OLPs ou *Optical Link Plugs*), conectados ao dispositivo e à fibra ótica sobre a interface RS485. Isso possibilita que se alterne entre RS485 e transmissão de fibra ótica dentro de uma planta, dependendo das circunstâncias.

O mercado oferece um chip ASIC (*Fiber Optical Communication System Interface*) com porta FOC, fornecido pela Siemens.Entretanto, com esta tecnologia só é possível a configuração de topologias em linha. Para a configuração de topologias em anel, o uso de repetidores que realizem a conversão do sinal se faz necessário.

Tabela 12 – Características das fibras óticas.

O repetidor ótico Profibus-PA VRP10-O da *Vivace Process Instruments* permite que interfaces elétricas Profibus-PA (H1, 31.25 kbits/s) sejam convertidas em interfaces óticas Profibus-PA e vice-versa. A comunicação é do tipo *half-duplex* em distâncias de até 4 km, com o grande benefício da imunidade a EMI, garantindo uma alta integridade dos sinais e disponibilidade de rede Profibus-PA.

Figura 11- Repetidor ótico Profibus-PA.

ELEMENTOS DA REDE PROFIBUS-PA

Basicamente, pode-se citar os seguintes elementos de uma rede Profibus:

Mestres (Masters): são elementos responsáveis pelo controle do barramento. Podem ser de duas classes:

- Classe 1: responsável pelas operações cíclicas (leitura/escrita) e controle das malhas abertas e fechadas do sistema de controle/automação (CLP);
- Classe 2: responsável pelos acessos acíclicos dos parâmetros e funções dos equipamentos PA (estação de engenharia ou estação de operação: Simatic PDM, Pactware).

Acopladores (*Couplers*): são dispositivos utilizados para traduzir as características físicas entre o Profibus-DP e o Profibus-PA (H1: 31,25 kbits/s). Além disso:

- São transparentes para os mestres (não possuem endereço físico no barramento);
- Atendem aplicações seguras (*Ex*) e não-seguras (*Non-Ex*), definindo e limitando o número máximo de equipamentos em cada segmento PA. O número máximo de equipamentos em um segmento depende, entre outros fatores, da somatória das correntes quiescentes, de falhas dos equipamentos (FDE) e distâncias envolvidas no cabeamento;
- Podem ser alimentados com até 24 Vdc, dependendo do fabricante e da área de classificação;
- Podem trabalhar com as seguintes taxas de comunicação, dependendo do fabricante: P+F (93.75 kbits/s e SK3: até 12 Mbits/s), Siemens (45.45 kbits/s).
- *Link devices*: São dispositivos utilizados como escravos da rede Profibus-DP e mestres da rede Profibus-PA (H1: 31,25kbits/s). São utilizados para atingir altas velocidades (de até 12Mbits/s) no barramento DP. Além disso:
 - Possuem endereço físico no barramento;

• Permitem que sejam acoplados até 5 *couplers*e aumentam a capacidade de endereçamento da rede DP.

TOPOLOGIAS NO PROFIBUS-PA

Na figura 12, temos as topologias principais do Profibus-PA, embora na prática encontraremos um misto das duas.

Figura 12 – Profibus-PA: IEC 61158-2 - Topologias em barramento e árvore/estrela.

TECNOLOGIA DE TRANSMISSÃO NO PROFIBUS-PA

A tecnologia de transmissão síncrona com codificação Manchester em 31.25 Kbits/s (modo voltagem) está definida segundo o IEC 61158-2 e foi pensada para satisfazer os requisitos das indústrias químicas e petroquímicas: segurança intrínseca e possibilidade de alimentar os equipamentos de campo pelo barramento. As opções e limites de trabalho em áreas potencialmente explosivas foram definidas segundo o modelo FISCO (*Fieldbus Intrinsically Safe Concept*).

A tabela 13 mostra algumas características do IEC 61158-2.

Características	Meio Físico de acordo com IEC61158-2, variante Profibus-PA
Taxa de comunicação	31.25 kbits/s
Cabo	Par trançado com blindagem
Topologia	Barramento, árvore/estrela, ponto a ponto.
Alimentação	Via barramento ou externa
Segurança Intrínseca	Possível
#considerando consilmo	Máximo:32 (<i>non-Ex</i>) Explosion Group IIC: 9 Explosion Group IIB: 23
Cabeamento Máximo	1900 m, expansível a 10Km com 4 repetidores
Máximo comprimento de <i>spur</i>	120m/spur
Sinal de comunicação	Codificação Manchester, com modulação de corrente.

Tabela 13 - Características da tecnologia de transmissão IEC 61158-2.

ENDEREÇAMENTO NA REDE PROFIBUS

Quanto ao endereçamento, podemos ter duas arquiteturas a analisar, onde fundamentalmente temos a transparência dos *couplers* e a atribuição de endereços aos *links devices*, conforme podemos ver nas figuras a

seguir.

Note que a capacidade de endereçamento é significantemente aumentada com a presença dos *links*, uma vez que estes são escravos para o Profibus-DP e mestres para o Profibus-PA.

Figura 13- Endereçamento com couplers.

Figura 14 – Endereçamento com links.

REGRAS BÁSICAS DE PROJETO

PROFIBUS-DP

O Profibus-DP é o *backbone* de uma rede Profibus,onde se tem*link devices*, *starter motors*, *digital I/O* e segmentos Profibus-PA. Esta característica de uma rede híbrida envolvendo variáveis analógicas e digitais é algo muito forte no Profibus.

Vejamos agora, algumas regras básicas envolvendo o RS485:

- 1 -Não exceda 32 nós por segmento;
- 2 -Não use derivações se a taxa de comunicação for maior do que 1.5Mbits/s (nota 1);
- 3 Atente-se aos requisitos para taxa de comunicação maior do que 1.5 Mbits/s;
- 4 -Cada final de segmento deve possuir um terminador ativo;
- 5 Não exceda 125 enderecos por cartão Profibus:
- 6 Não use mais do que 9 repetidores entre mestres e escravos Profibus (nota 2);
- 7 -Respeite as regras entre taxa de comunicação e comprimentos de tronco e *spurs*;
- 8 -Use as boas práticas de aterramento e *shielding*;
- 9 -Use as boas práticas no roteamento de cabos, inversores de frequência e layout de painéis, evitando interferência eletromagnética;
- 10 -Calcule o projeto para a mais alta taxa de comunicação, mas use, sempre que possível, taxas menores, pois são menos suscetíveis a ruídos e interferências.

PROFIBUS-PA

O Profibus-PA tem mais flexibilidade em termos de *layout*, quando comparado ao Profibus-DP. Vejamos agora, algumas regras básicas envolvendo o Profibus-PA:

- 1-Esteja atento à topologia (nota 1);
- 2-Esteja atento ao máximo número de *spurs* e equipamentos por *spur* (nota 1);
- 3-Use preferencialmente cabo tipo A e evite *splices* (mudança de impedância);
- 4-Esteja atento ao comprimento total por segmento e use repetidores;

- 5-Garanta mais de 10Vdc de alimentação em cada equipamento;
- 6-Verifique o número total de equipamentos e a corrente total por segmento (nota 1);
- 7-Cada final de segmento deve possuir um terminador;
- 8-Proteja os *spurs* PA com protetores de transiente e use protetores de curto;
- 9-Use as boas práticas de aterramento e shielding;
- 10-A segurança intrínseca afeta o número máximo de *spurs* e o comprimento total.

Notas:

- 1-O efeito capacitivo dos *spurs* em altas taxas de comunicação pode afetar o sinal de comunicação.
- **2-**Alguns modelos de repetidores limitam-se a um máximo de 4 unidades para não estender os atrasos de comunicação.

CUIDADOS E RECOMENDAÇÕES COM ATERRAMENTO E SHIELD

REDE PROFIBUS-DP

Em campo é muito comum encontrar problemas devido a EMC (Emissão Eletromagnética). Aliados à diferença de potencial de terra, geram inconvenientes perturbações de forma intermitente na comunicação e, normalmente, não são fáceis de serem detectados.

Quando se tem o sinal de comunicação Profibus-DP e o cabeamento distribuído entre as diversas áreas, o recomendado é equalizar o terra conforme a figura 15. Com isso, elimina-se a possível diferença de potencial entre o aterramento da área 01 e o sinal DP, assim como a diferença de potencial entre o aterramento da área 02.

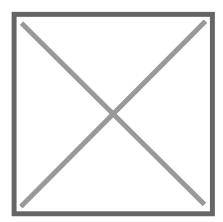


Figura 15 – Sistema de aterramento com diferentes áreas em Profibus-DP.

TERRA EQUIPOTENCIAL

A condição ideal de aterramento para uma planta e suas instalações é obtida quando o mesmo potencial é medido em qualquer ponto. Isso pode ser conseguido com o interligamento de todos os sistemas de aterramento da planta através de um condutor de equalização de potencial. Essa condição é chamada na literatura técnica de terra equipotencial.

Assim, mesmo que houver um aumento das tensões presentes, não haverá o risco de choque elétrico para

qualquer pessoa na planta, uma vez que todos os elementos estarão com o mesmo potencial de terra.

Na prática existem outras maneiras de tratar o assunto *shielding* e aterramento, já que existe muita controvérsia. Por exemplo, o aterramento do *shield* pode ser feito em cada estação através do conector 9-pinos sub D, onde a carcaça do conector faz contato com o *shield* neste ponto e ao conectar-se na estação é aterrado. Este caso, porém, deve ser analisado pontualmente, verificando a graduação de potencial dos terras a fim de equalizar estes pontos, se necessário.

O sistema de linha equipotencial é usado para nivelar o potencial de terra em diferentes locais da planta de forma que nenhuma corrente circule sobre a blindagem do cabo. Algumas boas práticas para este procedimento:

- Use cabos de cobre ou fitas de aterramento galvanizadas para a linha equipotencial no sistema e entre componentes do sistema;
- Conecte a linha equipotencial ao terminal de aterramento ou à barra com uma área de superfície ampla;
- Conecte todas as ligações de terra e de blindagem (se existirem) do instrumento ao sistema de linha equipotencial;
- Conecte a superfície de montagem (por exemplo, o painel do gabinete ou trilhos de montagem) ao sistema de linha equipotencial;
- Sempre que possível, conecte o sistema de linha equipotencial das redes ao sistema de linha equipotencial do prédio;
- Se as partes forem pintadas, remova a tinta do ponto de conexão antes de conectá-lo;
- Proteja o ponto de conexão contra corrosão depois da montagem (por exemplo, com tinta de zinco ou verniz):
- Proteja a linha equipotencial contra corrosão (uma opção é pintar os pontos de contato);
- Use parafuso de segurança ou conexões de terminal para todas as conexões de terra e superfície, além de arruelas de pressão para evitar que as conexões fiquem frouxas por causa de vibração ou movimento;
- Use terminais nos cabos flexíveis da linha equipotencial (as extremidades do cabo não devem nunca ser estanhadas);
- Faça o roteamento da linha equipotencial o mais perto possível do cabo;
- Conecte as partes individuais de bandejas de cabos metálicas umas às outras. Use anéis de acoplamento (*bonding links*) especiais ou *jumpers* específicos (certifique-se que os anéis de acoplamento são feitos do mesmo material que as bandejas de cabos. Os fabricantes das bandejas de cabos podem fornecer os anéis de acoplamento apropriados);
- Sempre que possível, conecte as bandejas de cabos feitas de metal ao sistema de linha equipotencial;
- Use anéis de acoplamento flexíveis (*flexible bonding links*) para expansão das juntas (estes anéis de acoplamento são fornecidos pelos fabricantes de cabos);
- Para conexões entre prédios diferentes ou entre partes de prédios, a rota da linha equipotencial deve ser traçada paralela ao cabo, mantendo as seguintes seções transversais mínimas, de acordo com a IEC 60364-5-54:

Cobre: 6 mm²
Alumínio: 16 mm²
Aço: 50 mm²

Em áreas perigosas deve-se sempre fazer o uso das recomendações dos órgãos certificadores e das técnicas de instalação exigidas pela classificação das áreas. Um sistema intrinsecamente seguro deve possui componentes que devem ser aterrados e outros que não. O aterramento tem a função de evitar o aparecimento de tensões consideradas inseguras na área classificada.

Na área classificada evita-se o aterramento de componentes intrinsecamente seguros, a menos que o mesmo seja necessário para fins funcionais, quando se emprega a isolação galvânica. A normalização estabelece uma isolação mínima de 500 Vca. A resistência entre o terminal de aterramento e o terra do sistema deve ser inferior a 1. Para mais detalhes, consulte a ABNT NBR IEC 60079-14, que regulamenta projetos, seleção e montagem de instalações elétricas em atmosferas potencialmente explosivas.

Quanto ao aterramento, recomenda-se agrupar circuitos e equipamentos com características semelhantes de ruído em distribuição em série e unir estes pontos em uma referência paralela, além de aterrar as calhas e bandejamentos.

Um erro comum é o uso de terra de proteção como terra de sinal. Vale lembrar que este terra é muito ruidoso e pode apresentar alta impedância. É interessante o uso de malhas de aterramento, pois apresentam baixa impedância. Condutores comuns com altas freqüências apresentam a desvantagem de terem alta impedância. Os *loops* de correntes devem ser evitados. O sistema de aterramento deve ser visto como um circuito que favorece o fluxo de corrente sob a menor impedância possível. O terra recomendado deve possuir um valor inferior a 10.

O *shield* (a malha, assim como a lâmina de alumínio) deve ser conectado ao terra funcional do sistema via conector Profibus-DP, a fim de proporcionar uma ampla área de conexão com a superfície condutiva aterrada. Na passagem do cabo, deve-se verificar com cuidado que o acabamento do*shield* esteja bem feito e não dando contato com outros pontos, a não ser os pontos de terra. A máxima proteção se dá com os pontos aterrados, onde proporciona-se um caminho de baixa impedância aos sinais de alta frequência.

Em casos onde existe um diferencial de tensão entre os pontos de aterramento (por exemplo, áreas distintas em prédios separados), recomenda-se passar uma linha de equalização de potencialjunto ao cabeamento (a própria calha metálica pode ser usada ou, por exemplo, um cabo AWG 10-12). Desta forma a proteção se torna mais efetiva para uma ampla faixa de frequência.

A Figura 16 apresenta detalhes de cabeamento, *shield* e aterramento em áreas distintas.

Figura 16 - Detalhe de cabeamento em áreas distintas com potenciais de terras equalizados.

REDE PROFIBUS-PA

Recomenda-se verificar a ABNT NBR IEC 60079-14 para aterramento e ligação com sistema equipotencial de sistemas intrinsecamente seguros.

Um circuito intrinsecamente seguro deve estar flutuando ou estar ligado ao sistema equipotencial associado com a área classificada em somente um ponto.

O nível de isolação requerido (exceto em um ponto) deve ser projetado para suportar 500 V no ensaio de isolação de acordo com 6.4.12 da IEC 60079-11.

Quando este requisito não for atendido, o circuito deverá ser considerado aterrado naquele ponto. Mais de uma conexão ao terra é permitida no circuito, desde que o circuito seja dividido em sub-circuitos

galvanicamente isolados, cada qual aterrado somente em um ponto.

Blindagens devem ser conectadas à terra ou à estrutura de acordo com a ABNT NBR IEC 60079-14.

Sempre que possível, conecte as bandejas de cabos ao sistema de linha equipotencial.

As malhas (*shield*) devem ser aterradas em um único ponto no condutor de equalização de potencial. Se houver necessidade, por razões funcionais, de outros pontos de aterramento,são permitidos por meio de pequenos capacitores, tipo cerâmico, inferiores a 1 nF e para 1500V, desde que a somatória das capacitâncias não ultrapasse 10 nF.

Nunca instale um dispositivo que tenha sido instalado anteriormente sem uma barreira intrinsecamente segura em um sistema intrinsecamente seguro, pois o diodo *zener* de proteção pode estar queimado, não atuando seguramente em áreas intrinsecamente segura.

Em síntese, pode-se adotar, as seguintes formas de aterramento do *shield*:

- Aterramento somente em uma extremidade: do lado do *coupler*(no negativo da fonte que alimenta o *coupler*, e que é aterrado no painel).
- Aterramento capacitivo de um lado do *shield*: do lado do *coupler*(no negativo da fonte que alimenta o *coupler*, e que é aterrado no painel) e no lado da conexão do *shield* ao terra. Capacitor cerâmico, < 10 nF, isolação > 1500V.
- Aterramento do *shield* nas duas extremidades: somente nos casos onde a diferença em tensão, entre ambos os extremos for no máximo 1 V (rms) para que os efeitos dos *loops* de terra sejam minimizados.

Quando se tem os aterramentos em dois pontos, a resistência do aterramento deve ser a mais baixa possível em ambos os extremos para minimizar os *loops* de terra, principalmente em baixas frequências.

Em frequências de níveis CC até 1 MHz, a blindagem do cabo pode ser aterrada em uma única extremidade e oferecer uma boa resposta quanto aos efeitos da interferência eletromagnética. Em frequências mais altas, recomenda-se aterrar a blindagem do cabo em ambas as extremidades. Nesses casos, é muito importante que as diferenças de potencial de terra em ambos os pontos de conexão ao aterramento sejam as mínimas possíveis.

A diferença em tensão, entre ambos os extremos deve ser, no máximo 1 V (rms) para que os efeitos dos *loops* de terra sejam minimizados. É também importante considerar que em altas frequências existe a capacitância parasita de acoplamento que tende a completar o *loop* quando a blindagem está aterrada em um único extremo do cabo.

Deve-se sempre consultar o padrão IEC 61158 e os perfis e guias técnicos do Profibus. Em caso de discrepância ou dúvida, o padrão IEC 61158, perfis, guias técnicos e manuais de fabricantes prevalecem em suas últimas versões.

CONCLUSÃO

Com esta variedade de funcionalidades e aplicações, o protocolo PROFIBUS oferece toda a flexibilidade e autonomia que o usuário necessita para automatizar e otimizar processos, com facilidade de instalação, operação, manutenção e diagnósticos de variáveis que sejam importantes para o correto funcionamento da planta.

O sucesso de toda rede de comunicação está intimamente ligado à qualidade das instalações. O seu tempo de comissionamento, startup e seus resultados podem estar comprometidos com a qualidade dos serviços de

instalações.

Este artigo não substitui os padrões IEC 61158 e IEC 61784 e nem os perfis e guias técnicos do PROFIBUS. Em caso de discrepância ou dúvida, os padrões IEC 61158 e IEC 61784, perfis, guias técnicos e manuais de fabricantes prevalecem.

O conteúdo deste artigo foi elaborado cuidadosamente. Entretanto, erros não podem ser excluídos e assim nenhuma responsabilidade poderá ser atribuída ao autor. Sugestões de melhorias podem ser enviadas ao email cesar.cassiolato@vivaceinstruments.com.br.

Sobre o autor

César Cassiolato é Presidente e Diretor de Qualidade da Vivace Process Instruments. É também Conselheiro Administrativo da Associação PROFIBUS Brasil América Latina desde 2011, onde foi Presidente de 2006 a 2010, Diretor Técnico do Centro de Competência e Treinamento em PROFIBUS, Diretor do FDT Group no Brasil e Engenheiro Certificado na Tecnologia PROFIBUS e Instalações PROFIBUS pela Universidade de Manchester

Referências

- Manuais Vivace ProcessInstruments
- Artigos Técnicos César Cassiolato
- https://www.vivaceinstruments.com.br/
- Material de treinamento e artigos técnicos PROFIBUS César Cassiolato
- Especificações técnicas PROFIBUS
- www.profibus.com