HART 7 ®: DETALHANDO O PROTOCOLO

INTRODUÇÃO

HART® (Highway Addressable Remote Transducer) é um protocolo de comunicação bidirecional, introduzido em 1990. Utilizado em plantas industriais, no qual controla de modo padronizado o envio e recebimento de dados digitais através de cabos analógicos, entre dispositivos inteligentes e sistemas *host* (centralizado), é o protocolo mais difundido no mundo.

O *host* pode ser qualquer aplicativo de software, dispositivo portátil, sistema de segurança, gerenciamento de ativos, controle de processos da fábrica ou qualquer outro sistema que utilize alguma plataforma de controle. HART é a tecnologia mais utilizada atualmente nas redes de automação industrial, instalada em mais de 30 milhões de dispositivos em todo mundo, oferecendo uma solução confiável e duradoura.

Os dados digitais são comunicados simultaneamente com o sinal 4-20 mA, utilizando o padrão *Bell-202* de chaveamento por deslocamento de frequência FSK (*Frequency Shift Key*) a uma taxa de 1200 bps.

Figura 1 - Sinais HART®: digital e 4-20mA.

O sinal digital em baixo nível é superposto no sinal analógico 4-20 mA.

1200 Hz = "1" 2200 Hz = "0"

Sinal 4-20 mA: indica a PV (variável principal) do equipamento.

Sinal Digital: comunicação via comandos (status, configurações, diagnósticos, etc).

TOPOLOGIA

O protocolo se baseia na comunicação mestre/escravo com sua topologia podendo ser ponto a ponto ou multidrop (Figura 2) e permite a utilização de até dois mestres simultâneos (Figura 3). O mestre primário é um computador, CLP ou multiplexador. O mestre secundário geralmente é representado por *handhelds* ou softwares de configuração e calibração.

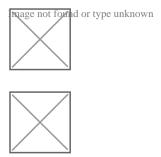


Figura 2 – Topologias ponto a ponto e multidrop.

Figura 3 - Conexão Mestre/Escravo HART®.

O modo multidrop permite que vários equipamentos sejam conectados em um mesmo barramento, ficando acessível a um único ponto de comunicação pelo *host*. A versão 7 do protocolo permite até 64 equipamentos conectados em multidrop (endereços 0 a 63), enquanto as versões anteriores permitem apenas 16 equipamentos (endereços 0 a 15).

O PROTOCOLO

Uma grande mudança na versão 7 do protocolo HART® ocorreu com a definição do modelo sem fio, chamado de WirelessHART. A Figura 4 exemplifica as diferenças entre as camadas para as definições com fio e sem fio do protocolo.

Figura 4 – Modelo OSI de camadas para HART® 7 (com fio e sem fio).

A camada física do modelo WirelessHART é definida pela norma IEEE 802.15.4, na faixa de 2,4 GHz (mesma do ZigBee). A camada de dados possui um protocolo intrínseco de controle e sincronismo de tempo (TDMA/CSMA). A camada de rede possui um protocolo de auto-organização e otimização de consumo do tipo Mesh.

Para maiores detalhes sobre a especificação WirelessHART no protocolo HART® 7, veja o artigo sobre WirelessHART em https://www.vivaceinstruments.com.br/.

PACOTE DE DADOS (FRAME)

O protocolo define um conjunto de comandos, no qual permite comunicação uniforme e consistente para todos os dispositivos de campo. Para que estes comandos sejam interpretados corretamente pelo equipamento ao qual foi destinado, o protocolo especifica uma estrutura de dados, conhecida por *frame* HART®, que possui campos de sincronismo, endereçamento, comando, dados e segurança dos dados, como mostrado na Figura 5, a seguir.

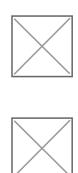


Figura 5 – Estrutura de dados para comunicação HART® (frame).

A parte superior da figura, representada por vários bytes 0xFF é denominada de Preâmbulo e tem como função sincronizar o início de uma nova mensagem entre equipamento e *host*. Usualmente, ao menos cinco bytes de Preâmbulo são enviados em um *frame*, porém, de acordo com a especificação do protocolo, apenas dois bytes já são suficientes para validar um *frame* HART®.

Logo após os bytes de Preâmbulo, aparece o campo denominado Delimitador, que tem como função identificar o tipo de endereço e *frame* (longo ou curto), além do tipo da mensagem (do equipamento para o *host*, do *host* para o equipamento ou *burst*). A distribuição dos bits que realizam estas identificações está indicada na Figura 6. O frame de tipo STX é conhecido como requisição, pois representa o envio do mestre ao escravo.

Figura 6 - Delimitador HART®.

Similarmente, o frame do tipo ACK é conhecido como resposta, pois representa o retorno da requisição, do escravo ao mestre.

Além disso, o frame do tipo BACK é conhecido por modo *Burst*, onde o equipamento é programado pelo host para enviar mensagens específicas (geralmente comandos de monitoração ou status) em espaços de tempo pré-determinados. Veja mais sobre este modo no artigo sobre o protocolo WirelessHART.

O campo seguinte ao Delimitador é o responsável pelo endereçamento do equipamento ao qual o *frame* é destinado. Sendo assim, este campo, conhecido como Endereço, indica ao equipamento que recebe o *frame* se deve continuar a interpretá-lo ou se pode ignorá-lo, a partir daquele momento. O campo Endereço pode possuir um ou cinco bytes, dependendo do tipo de *frame*, especificado no Delimitador. A Figura 7 exemplifica os modelos de *frame* curto e longo.



Figura 7 – Frames curto e longo HART®.

O *frame* curto possui um byte e é utilizado apenas com o comando zero, para identificação inicial do equipamento. Supondo que o *host* não conheça o fabricante ou o modelo do equipamento ao qual está se conectando, a única informação disponível é o chamado *Polling Address*, ou seja, o endereço curto do equipamento no barramento HART®, explicado anteriormente. Lembrando que a partir da versão 7 do protocolo HART®, este endereço passou a ser configurável entre 0 e 63 (os seis bits menos significativos do byte de endereço curto).

Os dois bits mais significativos indicam, respectivamente, o tipo de mestre *host* (primário ou secundário) e se o equipamento está em modo *Burst*. Estes dois bits são utilizados também no *frame* longo.

O frame longo, além dos dois bits já citados, possui ainda 14 bits que identificam o modelo do equipamento, chamado de *Expanded Device Type*. Este valor é definido pela HART® Foundation no momento do registro do equipamento pelo fabricante. Sendo assim, não existem fabricantes ou produtos que possuam este código com valores idênticos.

Completando o campo Endereço do frame longo, existem ainda três bytes que identificam o equipamento propriamente dito, conhecidos como *Unique Device Identifier* (ou apenas *Device ID*). Supondo que um barramento possua dois equipamentos do mesmo fabricante e do mesmo modelo (por exemplo, dois transmissores de temperatura da Vivace), é necessário que o host possa identificá-los separadamente. Nesta caso, o fabricante gera um valor de identificação único para cada equipamento no momento de sua fabricação.

Após o campo de endereçamento, finalmente aparece o campo Comando, propriamente dito. Este campo especifica a qual comando se referem os dados contidos no *frame* em análise. A norma do protocolo especifica faixas de comandos para identificar seus tipos. As faixas de comando estão descritas na Tabela 1.

COMANDOS	FAIXA	DESCRIÇÃO
UNIVERSAIS	0-30, 38 e 48	Obrigatórios a todos os equipamentos.
PRÁTICA-COMUM	32-121, exceto 38 e 48	Funções comuns, não obrigatórios.
ESPECÍFICOS	128-253	Funções exclusivas de um equipamento.
PRÁTICA-COMUM ADICIONAIS	512-767	Funções comuns, não obrigatórios.
WIRELESSHART	768-1023	Funções para equipamentos sem fio.
FAMÍLIA	1024-33791	Funções padronizadas para famílias de equipamentos.
ESPECÍFICOS WIRELESSHART	64512-64765	Funções para equipamentos sem fio.
ESPECÍFICOS ADICIONAIS	64768-65021	Funções exclusivas de um equipamento.

Tabela 1 – Faixas de comandos HART®.

Os campos definidos até este momento têm seu tamanho fixo, mesmo no caso do Endereço, pois o campo Delimitador define qual o tipo de *frame*. O campo de dados possui tamanho variado, pois os dados a serem enviados, seja na requisição ou na resposta, dependerão do comando a ser enviado e da necessidade do usuário para alguns comandos. Para resolver este problema, existe um campo, denominado *Byte Count*, responsável por identificar quantos bytes de dados estão sendo enviados no *frame*.

Quando o frame for do tipo STX (requisição do mestre ao escravo), a sequência de campo após o Comando será (*Byte Count + Dados*). Porém, quando se tratar de uma resposta (ACK ou BACK), dois bytes relativos à qualidade da resposta serão inseridos após o *Byte Count*.

O primeiro byte é denominado *Response Code* e indica possíveis erros de comunicação ou tratamento dos comandos (veja alguns exemplos na Tabela 2), podendo ser uma notificação, um aviso ou um erro. No caso do erro, o comando não é executado. O segundo byte, denominado Status indica alterações no comportamento do equipamento, definidas pelo protocolo de acordo com a Tabela 3.

RESP.CODE	DEFINIÇÃO	
0xC0	Erro de comunicação: paridade no <i>frame</i> recebido.	
0xA0	Erro de comunicação: <i>overrun</i> . Byte sobrescrito.	
0x90	Erro de comunicação: <i>framing. Stop bit</i> não detectado.	
0x88	Erro de comunicação: checksum calculado.	
0x82	Erro de comunicação: <i>overflow</i> . <i>Frame</i> muito longo.	
0x02	Erro de comando: seleção inválida.	
0x05	Erro de comando: poucos dados recebidos.	
0x07	Erro de comando: escrita protegida.	

Tabela 2 - Exemplos de Response Code.

STATUS	DEFINIÇÃO	
0x80	Mau funcionamento do equipamento.	
0x40	Configuração alterada.	
0x20	Reinicialização do equipamento.	
0x10	Status adicionais disponíveis.	
0x08	Corrente de saída em modo fixo.	
0x04	Corrente de saída saturada.	
0x02	Variável não-primária fora dos limites.	
0x01	Variável primária fora dos limites.	

Tabela 3 - Byte de Status do Equipamento.

O campo Dados traz as informações requeridas pelo comando enviado, sejam elas relativas a monitoração de variáveis, configuração de parâmetros ou status do equipamento. O tamanho do campo Dados é especificado pelo comando, seja ele padrão do protocolo ou específico do equipamento. Deve ser acrescentado no contador *Byte Count* para que a máquina de estados de recepção (no *host* ou no equipamento) saiba em qual o byte finalizar este campo.

Aqui surge a primeira grande novidade existente a partir da versão 6 do protocolo HART®, porém mais evidente na versão 7 por ser utilizada em todos os comandos WirelessHAR. Como descrito anteriormente, o campo Comando oferece faixas destinadas a comandos padrões, específicos, WirelessHART, etc. Estes comando possuem valores de 0 a 65021, porém o campo Comando é definido como apenas um byte (0 a 255), pois era suficiente para as versões antigas do protocolo.

Como solução para este problema, o protocolo criou um recurso chamado de Comando Expandido, indicado no campo Comando pelo valor 0x1F (*flag* de expansão), equivalente ao comando 31, não utilizado (veja na Tabela 1). Desta forma, quando a máquina de estado de recepção identifica este valor no campo Comando, entende que os primeiros dois bytes do campo Dados (após *Response Code* e Status, no caso de um frame de resposta) especificarão o comando expandido, garantindo a faixa até 65535.

Ainda sobre o conteúdo do campo Dados, geralmente a resposta de um comando inclui os dados enviados na requisição, seguidos por dados extras, em caso de monitoração. No caso de uma configuração, por exemplo, a resposta será idêntica à requisição, repetindo apenas os bytes enviados. Porém, ocorrendo erros de comunicação ou tratamento do *frame* HART®, apenas os campos *Response Code* e Status serão enviados, evidenciando claramente ao *host* que houve algum problema.

A Figura 8 exemplifica o comando 06, de alteração do *Polling Address* e *Loop Current*. O primeiro *frame* é uma requisição STX para alteração do endereço de *polling* para 01. Como resposta ACK, o equipamento repete no campo Dados os mesmos valores da requisição. Além disso, muda o *Byte Count* para 04, pois aumenta o *frame* com a adição do *Response Code* 00 e o Status 40 (configuração alterada).

STX:

FFFFFFFF82 E33700000106 02 0101 53

ACK:

FFFFFFFF86 E33700000106 04 00 40 0101 57

Figura 8 - Frames HART® STX e ACK sem erro.

Já no caso da Figura 9, temos um valor inválido para a alteração do endereço de *polling* (FF). Desta forma, a resposta ACK ao comando possui apenas dois bytes de dados, correspondentes ao *Response Code* (02 - Seleção Inválida) e Status.

STX:

FFFFFFFF 82 E337000001 06 02 FF01 AD

ACK:

FFFFFFFF 86 E337000001 06 02 02 00 55

Figura 9 - Frames HART® STX e ACK com erro.

Como último campo do frame HART®, o *Checksum* (ou verificação de soma) é responsável pela validação dos bytes transmitidos com uma segurança mínima. Para cada byte enviado a partir do campo Delimitador, uma operação lógica XOR é realizada, formando o byte final que será enviado neste campo. A máquina de recepção realiza as mesmas operações com os bytes recebidos, comparando o resultado final com o byte recebido no campo *Checksum*. O frame é validado apenas quando estes valores se equivalem. Caso contrário, o erro de comunicação 0x88 (veja Tabela 2) é exibido na resposta do equipamento.

APLICAÇÕES DOS COMANDOS

Como explicado anteriormente, os comandos HART® são divididos em faixas que permitem selecionar quais funcionalidades devem estar presentes nos equipamentos de forma obrigatória ou opcional. Os comandos Universais obrigatórios abrangem as seguintes funcionalidades:

- Identificação básica (endereço *polling*, TAGs, descrição, mensagem, data);
- Variáveis principais (corrente de loop, PV, SV, TV, QV);
- Variáveis específicas (comando 9, onde o usuário escolhe o código da variável a ser monitorada);
- Status adicionais do equipamento.

Os comandos de Prática-Comum opcionais abrangem as seguintes funcionalidades:

- Calibração da corrente de loop;
- Configurações da PV;
- Reinicialização do equipamento;
- Corrente de saída fixa;
- Modo Burst;
- Eventos.

Os comandos Específicos opcionais podem abranger as seguintes funcionalidades:

- Características do fabricante:
- Funções especiais do equipamento;
- Calibrações extras (pressão, posição, temperatura, etc);
- Diagnósticos específicos.

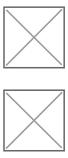


Figura 10 -Rede completa HART®.

Com esta variedade de funcionalidades e aplicações, o protocolo HART® oferece toda a flexibilidade e autonomia de que o usuário necessita para automatizar e otimizar processos, com facilidade de manutenção, monitoração e diagnósticos de variáveis que sejam importantes para o correto funcionamento da planta.

Sobre o autor

Alex Ginatto é Gerente de Produto e Desenvolvedor R&D na Vivace Process Instruments.

Referências

• HART HCF-Spec081

- HART HCF-Spec099
- HART HCF-Spec127r7.1
- HART HCF-Spec151r10.0

www.hartcomm.org