PROFIBUS DIAGNÓSTICOS

INTRODUÇÃO

O Profibus é um protocolo digital utilizado em sistemas de controle, que permite a conexão com interoperabilidade de diversos equipamentos e fabricantes. Possui uma série de vantagens em relação à tecnologia 4-20 mA, onde resumidamente pode-se citar, dentre outras:

- Fácil cabeamento com redução de custos;
- Simples operação, através da sala de controle;
- plicações em área classificadas;
- Altas taxas de comunicação no Profibus-DP;
- Poderosas ferramentas de configuração/parametrização e gerenciamento de ativos;
- Tecnologia aberta e em contínua evolução.

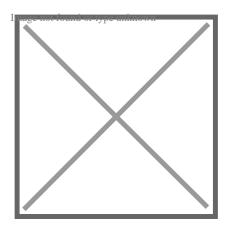


Figura 1 - Sistema Profibus

Neste breve artigo veremos detalhes sobre os diagnósticos cíclicos no Profibus.

MECANISMO DE DIAGNÓSTICOS

Os perfis de comunicação PROFIBUS (Communication Profiles) usam um protocolo uniforme de acesso ao meio. Este protocolo é implementado pela camada 2 do modelo de referência da OSI. Isto inclui também a segurança de dados e a manipulação do protocolo de transmissão e mensagens. Esta camada 2 é chamada Fieldbus Data Link (FDL). O Controle de Acesso ao meio (MAC) especifica o procedimento quando uma estação tem a permissão para transmitir dados. O MAC deve assegurar que uma única estação tem direito de transmitir dados em um determinado momento. O protocolo do PROFIBUS foi projetado para atender os dois requisitos básicos do

Controle de Acesso ao Meio:

• Durante a comunicação entre sistemas complexos de automação (mestres), deve ser assegurado que cada uma destas estações detém tempo suficiente para executar suas tarefas de comunicação dentro de um intervalo definido e preciso de tempo.

• Por outro lado, a transmissão cíclica de dados em tempo real deverá ser implementada tão rápida e simples quanto possível para a comunicação entre um controlador programável complexo e seus próprios dispositivos de I/O's (escravos).

Portanto, o protocolo PROFIBUS de acesso ao barramento inclui o procedimento de passagem do Token, que é utilizado pelas estações ativas da rede (mestres) para comunicar-se uns com os outros, e o procedimento de mestre-escravo que é usado por estações ativas para se comunicarem com as estações passivas (escravos).

A comunicação entre meste e escravos é feita usando-se um conjunto de telegramas: Configuração, Parametrização, Troca de Dados e Diagnósticos(veja a figura 1). Durante uma troca de dados (Data Exchange), se um escravo tem dado de diagnóstico ele responderá com o código de função FC igual a 0x0A.

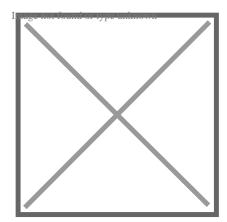


Figura 2 - Request/Response Frame PROFIBUS-DP

No próximo telegrama o mestre requisita um pedido de diagnósticos ao escravo e este responde conforme a figura 2. Cada escravo responde com pelo menos 6 bytes mandatórios de diagnósticos e ainda pode estender esta quantidade até 244 bytes, conforme a figura 3 e 4.

Figura 3 - O escravo seta Data High no byte FC para indicar que tem diagnóstico.

FUNÇÕES DE DIAGNÓSTICO

As várias funções de diagnósticos do PROFIBUS-DP permitem a rápida localização de falhas. As mensagens de diagnósticos são transmitidas ao barramento e coletadas no mestre. Estas mensagens são divididas em três níveis:

- Diagnósticos de Estação: estas mensagens ocupam-se com o estado operacional geral da estação (por exemplo: alta temperatura ou baixa tensão).
- Diagnósticos de Módulo: estas mensagens indicam que existe uma falha em um I/O específico (por ex.: o bit 7 do módulo de saída) de uma estação.
- Diagnósticos de Canal: estas mensagens indicam um erro em um bit de I/O (por ex.: curto-circuito na saída 7).

Nas figuras a seguir pode-se verificar os significados dos bytes de diagnósticos:

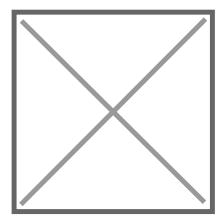
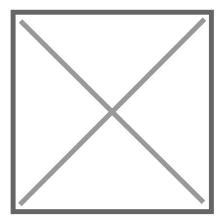
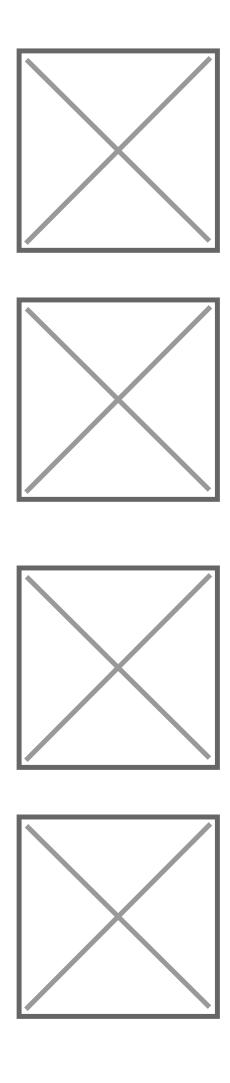
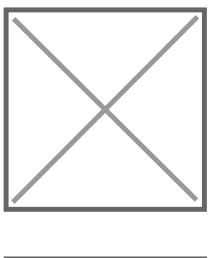





Figura 4 - Telegrama de Diagnóstico

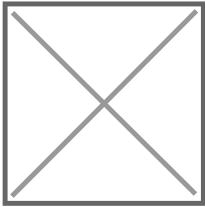


Figura 4 - Telegrama de Diagnóstico estendido

DIAGNÓSTICO NO PROFIBUS-PA

A tecnologia Profibus prevê alguns mecanismos de diagnósticos durante a comunicação cíclica.

O Physical Block possui o parâmetro DIAGNOSIS que tem a informação sobre os "alertas" no equipamento (por exemplo, device not initialized, power up, factory init, hardware failure etc.). O parâmetro DIAGNOSIS_MASK tem o diagnóstico suportado pelo equipamento.

DIAGNÓSTICO EM EQUIPAMENTOS DE SAÍDA

No bloco de saída analógica (AO) existe um parâmetro especial de saída com a finalidade de diagnóstico para elementos de saída, como atuadores ou posicionadores de válvulas.

O parâmetro CHECKBACK é um parâmetro do tipo bitstring (somente leitura) que possui o resumo das informações principais entre o bloco funcional AO e o bloco transdutor. O CHECKBACK pode ainda ser utilizado para configuração cíclica, o que será visto posteriormente.

DIAGNÓSTICOS (BLOCO FÍSICO)

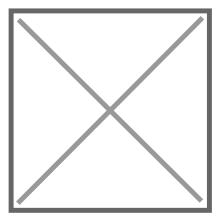


Tabela 1 – Bits de diagnóstico.

CHECK_BACK (BLOCO DE SAÍDA ANALÓGICA-AO)

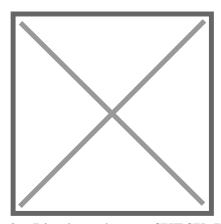


Tabela 2 – Bits do parâmetro CHECK_BACK.

DIAGNÓSTICOS CÍCLICOS

Os diagnósticos podem ser verificados ciclicamente ou aciclicamente, através de leituras via mestre Profibus-DP classe 1 e classe 2, respectivamente.

Os equipamentos de campo Profibus-PA disponibilizam 04 bytes padrões via Physical Block. Quando o bit mais significativo do 4º byte for "1", o diagnóstico será estendido em mais 6 bytes. Estes bits de diagnósticos estarão descritos no arquivo GSD.

Unit_Diag_bit é descrito no arquivo GSD do equipamento Profibus-PA.

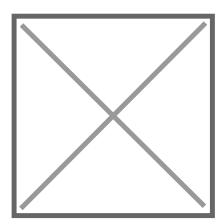


Tabela 3 – Diagnósticos cíclicos.

CONCLUSÃO

Vimos através deste breve artigo as condições de diagnósticos na tecnologia Profibus e suas particularidades.

Em caso de discrepância ou dúvida, as normas, os padrões IEC 61158 e IEC 61784, perfis, guias técnicos e manuais de fabricantes prevalecem. Sempre que possível, consulte a EN50170 para as regulamentações físicas, assim como as práticas de segurança de cada área.

O conteúdo deste artigo foi elaborado cuidadosamente. Entretanto, erros não podem ser excluídos e assim nenhuma responsabilidade poderá ser atribuída ao autor. Sugestões de melhorias podem ser enviadas ao email cesar.cassiolato@vivaceinstruments.com.br.

Sobre o autor

César Cassiolato

César Cassiolato é Presidente e Diretor de Qualidade da Vivace Process Instruments. É também Conselheiro Administrativo da Associação PROFIBUS Brasil América Latina desde 2011, onde foi Presidente de 2006 a 2010, Diretor Técnico do Centro de Competência e Treinamento em PROFIBUS, Diretor do FDT Group no Brasil e Engenheiro Certificado na Tecnologia PROFIBUS e Instalações PROFIBUS pela Universidade de Manchester.

Referências

- Manuais Vivace Process Instruments
- Artigos Técnicos César Cassiolato
- https://www.vivaceinstruments.com.br/
- Material de treinamento César Cassiolato
- Especificações técnicas PROFIBUS
- www.profibus.com