Newsletter


Cadastre seu e-mail aqui para receber as últimas novidades sobre os produtos e oportunidades Vivace.

Enviar

TEMPERATURA

INTRODUÇÃO

A temperatura é uma das variáveis mais usadas na indústria de controle de processos nos seus mais diversos segmentos e ainda vale lembrar que a temperatura é uma grandeza básica para a medição e controle de vazão, densidade, etc. Praticamente 94% dos processos possuem medições de temperatura. Comentaremos neste artigo a medição de temperatura e sua história, as principais características das tecnologias utilizadas, assim como alguns detalhes em termos do mercado e tendências com os transmissores de temperatura.

É notável o avanço da Física e eletrônica nos últimos anos. Sem dúvida de todas as áreas técnicas, foram as mais marcantes em desenvolvimentos. Hoje somos incapazes de viver sem as facilidades e benefícios que estas áreas nos proporcionam em nossas rotinas diárias. Nos processos e controles industriais não é diferente, somos testemunhas dos avanços tecnológicos com o advento dos microprocessadores e componentes eletrônicos, da tecnologia Fieldbus, o uso da Internet etc. E ainda, com a busca de desenvolvimentos na área de energia renovável, novos combustíveis, a nanotecnologia, existem inúmeras aplicações com a medição e controle de temperatura.

Em medições:

Não aja com negligência (omissão irresponsável), imprudência (ação irresponsável) ou imperícia (questões técnicas)
Lembre-se: cada planta e sistema têm os seus detalhes de segurança. Informe-se deles antes de iniciar seu trabalho.
Sempre que possível, consulte as regulamentações físicas, assim como as práticas de segurança de cada área.
É necessário agir com segurança nas medições, evitando contatos com terminais e fiação, pois a alta tensão pode estar presente e causar choque elétrico.


UM POUCO DE HISTÓRIA

A medição de temperatura é ponto de interesse da ciência há muitos anos. O corpo humano é um péssimo termômetro, pois só consegue diferenciar o que está frio ou quente em relação à sua própria temperatura. Portanto com o passar dos tempos o homem começou a criar aparelhos que o auxiliassem nesta tarefa. Vejamos a seguir mais detalhes:

Galenus
Uma das primeiras tentativas de construção de uma escala de temperatura ocorreu por volta de 170 DC. Claudius Galenus of Pergamum (130-201), medico grego, teria sugerido que as sensações de “quente” e “frio” fossem medidas com base em uma escala com quatro divisões numeradas acima e abaixo de um ponto neutro. Para tal escala termométrica, atribuiu a temperatura de “quatro graus de calor” à água a fervendo, a temperatura de “quatro graus de frio” ao gelo e a temperatura “neutra” a uma mistura de quantidades iguais daquelas duas substâncias. Galenus não foi um excelente medico, mas sim um excelente fisiologista. Ele escreveu vários tratados médicos, frutos de seu trabalho no tratamento dos Gladiadores romanos e das suas dissecações de animais vivos. Ele foi o primeiro medico a dar diagnósticos pela medição do pulso da pessoa.

Galileu Galilei 
O primeiro termômetro foi idealizado por Galileu Galilei (1564-1642). Ele consistia de um longo tubo de vidro com um bulbo preenchido com vinho. Este primeiro tipo de aparelho utilizado para a medição de temperatura foi chamado de termoscópio (instrumento que indica a temperatura através da mudança do volume).  Alguns tinham o ar do bulbo retirado antes de se colocar o liquido (podia ser água colorida no lugar do vinho), fazendo com que o liquido subisse dentro do tubo. Conforme o ar restante no tubo era aquecido ou esfriado, o liquido do tubo variava refletindo a mudança na temperatura do ar. Mais tarde seu colega Sanctorius acrescentou uma escala gravada no tubo para facilitar a medição da alteração da temperatura.

Fernando II 
Como o vinho era altamente influenciado pela pressão atmosférica, em 1641 Fernando II, Grão-Duque da Toscana (1610-1670) desenvolveu o primeiro termômetro selado. Ele utilizou o álcool em seu interior e fez 50 marcas (graus) na sua haste. Este termômetro não utilizava nenhum ponto fixo para a calibração da escala. O termômetro com utilização de substancia orgânica (álcool, etc.) em seu interior passou a ser conhecido como termômetro “spirit”. 

Robert Hook 
Robert Hook (1635-1703), curador da Sociedade Real em 1664 usou tintura vermelha no álcool. Sua escala, na qual cada grau representava um incremento do volume equivalente a 1/500 parte do volume do liquido do termômetro precisava somente de um ponto fixo. Ele selecionou o ponto de congelamento da água. O termômetro original de Hook tornou-se padrão do Colégio Gresham e foi usado pela Sociedade Real até 1709. A primeira leitura meteorológica compreensível foi feita nesta escala.

Ole Christensen Rømer
Em 1701, Ole Christensen Rømer (1644-1710) criou o primeiro termômetro, com dois pontos de referência. O termômetro usava vinho vermelho como indicador da temperatura. Rømer criou a escala de seu termômetro com 60 representando o ponto de ebulição da água. Rømer não sabia que o ponto de ebulição da água dependia da pressão atmosférica, fato descoberto depois por Fahrenheit. Quanto ao ponto inferior, isto é questão de debate já que partes de suas anotações foram destruídas pelo fogo. Alguns dizem que 0 representava uma mistura de água, gelo e cloreto de amônia, outros que ele usou o ponto de desgelo da água que marcou com 7.2 Rø. Mais tarde Rømer adotou por razões práticas outros pontos de referência como a água congelada e a temperatura do sangue (temperatura do corpo humano) que ele marcou como 22.5 Rø. Apesar da criação do termômetro, Rømer é mais conhecido pelo seu trabalho com a medição da velocidade da luz.

Fahrenheit
Daniel Gabriel Fahrenheit (1686-1736) devotou a maior parte de sua vida a criação de instrumentos meteorológicos.  Em 1708, Fahrenheit visitou Rømer em Copenhague e viu seu termômetro com dois pontos de calibração. Impressionado com o termômetro, ele passou a utilizá-lo quando voltou a Alemanha. Mais tarde, não gostando do inconveniente (e das frações) de dividir os graus Rømer de modo a permitir a medição de pequenos intervalos de temperatura e ele multiplicou a escala de Rømer por 4. Isto fez com que o ponto de derretimento da água fosse 30 graus e a temperatura do copo humano 90 graus. Depois ele mudou estes valores para 32 e 96 graus respectivamente para simplificar a marcação da escala (em 64 divisões).

Fahrenheit ainda adicionou mais um ponto com referência, a temperatura de equilíbrio de uma mistura de gelo e sal, que foi definida como zero em sua escala. Infelizmente o uso de três referencias causou mais incerteza do que precisão. Após a morte de Fahrenheit, a temperatura do corpo humano foi considerada inconstante para a definição de um ponto na escala de temperatura, então sua escala foi modificada para dar a ela novamente 2 pontos de referência. Tudo isto resultou no desajeitado padrão numérico, com o ponto de congelamento da água definido como 32 F e o ponto de ebulição (na pressão atmosférica padrão) definido como 212 F. Fahrenheit também percebeu que o álcool não tinha precisão e repetibilidade para a medição da temperatura. Em 1714, ele adotou o mercúrio, o qual se mostrou uma excelente alternativa devido ao seu coeficiente de expansão térmica ser altamente linear e não se dissolver no ar. Por outro lado ele é menos sensível a mudança de temperatura.

Réamur
Em 1731, Réne Antoine Ferchault de Réamur (1683-1757) propôs uma escala diferente, calibrada em apenas um ponto com as divisões da escala baseada na expansão do fluido no termômetro. Réamur fez muitos experimentos para selecionar o fluido termometricamente adequado e estabeleceu o conhaque diluído em uma certa quantidade de água. A diluição escolhida foi uma que dava a diluição de 80 em 1000, conforme aquecido da temperatura do congelamento até a temperatura de ebulição da água (80 porque erá um número fácil de se dividir em partes). Por causa desta seleção, as pessoas passaram a acreditar que na escala de Réamur a água fervia em 80 graus. Devido a isto, a escala de Réamur passou a ser graduada utilizando dois pontos fixos, o ponto de congelamento (0) e o ponto de ebulição da água (80).  Esta escala foi oficialmente adotada na Europa, exceto na Grã Betranha e na Escandinávia, mas com a adoção da escala centígrados pelo governo revolucionário da França em 1794 ela gradualmente perdeu popularidade e finalmente caiu em desuso no século 20.
 
Delisle
Um termômetro com escala similar à de Réamur foi inventada em 1732 por Joseph Nicolas Delisle (1688-1768), astrônomo francês, que foi convidado para ir a Rússia por Pedro, o grande. Naquele ano ele construiu um termômetro que usava mercúrio com fluido de trabalho. Delisle escolheu sua escala usando a temperatura de ebulição da água como o ponto fixo e mediu a contração do mercúrio (com baixas temperaturas) em cem milésimos. Os termômetros antigamente tinham 2400 graduações apropriadas ao inverno em São Petersburgo onde Delisle viveu. Em 1738 Josias Weitbrecht (1702 - 1747) recalibrou o termômetro de Delisle com 0 grau como o ponto de ebulição da água e 150 graus como o ponto de congelamento da água. Este termômetro permaneceu em uso na Rússia por mais de um século.

Celsius
Muitas tentativas de transformar a escala de Delisle para um intervalo de 100 graus foram feitas antes que o Suíço Anders Celsius (1701-1744) em 1742 propusesse graduar o termômetro com 100 graus como o ponto de ebulição da água e 0 como o ponto de derretimento da neve.

Aparentemente desejando evitar o uso de números negativos para as temperaturas, Celsius determinou o número 100 para o ponto de congelamento da água e 0 para o ponto de ebulição, dividindo a distância em intervalos de 100 graus. 

Linnaeus
Em 1744 o amigo de Celsius, Carl Linnaeus (1707-1778) inverteu a escala centígrado para atender um sentimento psicológico que quente deveria corresponder a maior temperatura. O uso da escala de Celsius no século 19 foi acelerado pela decisão das autoridades revolucionarias da França de adotar o sistema decimal para todas a quantidades mensuráveis. A escala centígrado tornou-se popular primeiro na Suíça e na Franca (onde ela coexistiu com a escalar de Réaumur) e depois na maior parte do mundo. A comissão de Pesos e Medidas, criado pela Assembléia Francesa decidiu em 1794 que o grau termométrico seria 1/100 da distância entre o ponto do gelo e o vapor d´agua (originando a palavra centígrado). Em outubro de 1948 na IX conferência de Pesos e Medidas o nome da unidade foi alterado para Celsius.

Seebeck  
Em 1821 Thomas Seebeck (1770-1831), descobriu que quando dois fios de metais diferentes são unidos em duas extremidades e um dos extremos é aquecido circula uma corrente elétrica no circuito. Estava desta forma descoberto o termopar, hoje em dia o mais importante sensor de temperatura para aplicações industriais.


Figura 1


Humphrey Davy
Sir Humphrey Davy (1778-1829) foi um brilhante cientista responsável pelo uso do gás do riso (óxido nitroso) como anestésico e por algumas descobertas como: o elemento sódio, potássio, boro, a solda por arco elétrico e a lâmpada de segurança para a mineração. Em 1821, ele descobriu também que a resistividade dos metais apresentava uma forte dependência da temperatura. 

William Siemens
Baseado na ideia da resistividade dos metais, Sir William Siemens (1823–1883) propôs em 1861, o uso de termômetros de resistência de platina, com o qual a medição da temperatura seria feita à custa da variação da resistência elétrica de um fio de platina com a temperatura.  A escolha da platina se deu por ela não se oxidar em altas temperaturas e por ter uma variação uniforme da resistência com a temperatura em um amplo range.

William Thomson
Em 1848, William Thomson (1824-1907) desenvolveu uma escala termodinâmica baseada no coeficiente de expansão de um gás ideal.
Está ideia se deve a descoberta de Jacques Charles sobre a variação de volumes dos gases em função da variação da temperatura, onde Charles concluíra com bases em experimentos e cálculos que à temperatura de –273 °C todos os gases teriam o volume igual a zero. Kelvin propôs outra solução: não era o volume da matéria que se anularia nessa temperatura, mas sim a energia cinética de suas moléculas. Sugeriu então que essa temperatura deveria ser considerada a mais baixa possível e chamou-a se zero absoluto. Então foi criada uma nova escala baseada na escala de grau centígrado. Esta escala absoluta foi mais tarde renomeada para Kelvin e sua unidade designada graus Kelvin (símbolo °K). Observe que a unidade de temperatura no SI é chamada de Kelvin (não graus Kelvin).

Rankine
em 1859, William John Macquorn Rankine (1820-1872) propôs outra escala de temperatura na qual especificava 0 para o zero absoluto, mas usava como base a escala graus Fahrenheit.  Devido a escala de Rankine ter o mesmo tamanho da escala de Fahrenheit, o ponto de congelamento da água (32 °F) e o ponto de ebulição da água (212 °F) correspondem respectivamente a 491.67 °Ra e 671.67 °Ra. Esta escala foi mais tarde renomeada Rankine e sua unidade designada graus Rankine (símbolo °R).

Callendar
Em 1887, Hugh Longbourne Callendar (1863-1930), aperfeiçoou o termômetro com resistência de platina, obtendo grande concordância de resultados entre o termômetro de platina e um termômetro de gás. Atualmente a medição de temperaturas por meio de termômetros de platina assume grande importância em numerosos processos de controle industrial.


A TEMPERATURA NOS DIAS DE HOJE

Com a criação das diversas escalas, houve a necessidade da definição das curvas dos vários sensores e de seus pontos de calibração. Isto foi alcançado nas diversas reuniões desde 1889 até hoje onde finalmente chegamos ao ITS-90 (International Temperature Scale), mas esta é uma longa história. 

Atualmente as escalas mais utilizadas são Celsius e Fahrenheit. Kevin e Rankine são mais utilizadas por cientistas e engenheiros. Quanto as outras escalas, elas acabaram sendo esquecidas.

 Figura 2 - Comparação das escalas de temperatura


Várias normas e padrões dependendo do país e região são utilizadas na medição de temperatura:  ANSI (EUA), DIN (Alemanha), JIS (Japão), BS (Inglaterra), etc. 

Nesta evolução da medição de temperatura, os Transmissores de Temperatura são muito importantes na área de automação e controle de processos. Em conjunto com uma diversidade de sensores contribuem para a melhoria contínua dos processos e qualidade final dos produtos. Veremos a seguir mais alguns detalhes deste importante equipamento.


EXEMPLO DE UM TRANSMISSOR HART 7 / 4-20 mA - VTT10-FH

O mercado mundial de transmissores de temperatura deve ficar em torno de US $ 490 milhões em 2017 e US $ 570 milhões em 2020, com um crescimento estimado em um CAGR de cerca de 5 a 6%. 

Analisando o mercado, podemos observar 4 linhas de transmissores de temperatura associados com a aplicação e custo. Um transmissor inteligente combina a tecnologia do sensor mais sua eletrônica.

1) Transmissores à prova de explosão e à prova de tempo 
Normalmente utilizados em aplicações críticas, com alta e média performance, possuem carcaça com duplo compartimento, separando eletrônica e sensores, dando robustez, segurança e confiabilidade, possuem indicação local, sensor matching (Callendar Van Dusen), auto diagnose, comunicação digital, ajuste local e são utilizados com os mais diversos sensores em medições simples, dupla, diferencial, sensor backup, etc. Exemplo: VTT10-F da Vivace. 

Figura 3 - TT10-FH

 
2) Transmissores para painel, montagem em trilho DIN
Sua principal aplicação é monitoração, permitindo facilmente a instalação, inúmeras opções em ambientes fechados e conexões com sensores, alta flexibilidade de instalação e manutenção, dando segurança e confiabilidade, possuem auto diagnose, sensor matching (Callendar Van Dusen), comunicação digital e são utilizados com os mais diversos sensores em medições simples, dupla, máxima, mínima, média, diferencial, etc. Exemplo: VVT10-P da Vivace.  

Figura 4 – VTT10-FH
 

3) Transmissores para montagem em cabeçote (poço)
Sua principal aplicação é a montagem em cabeçotes, permitindo facilmente instalação e conexões com sensores, alta flexibilidade de instalação e manutenção, dando segurança e confiabilidade, possuem auto-diagnose, sensor matching (Callendar Van Dusen), 
comunicação digital e são utilizados com os mais diversos sensores em medições simples, dupla, máxima, mínima, média, diferencial, etc. Exemplo: VTT10-H da Vivace.

Figura 5 – VTT10-HH

 
4) Transmissores para montagem em cabeçote (poço) baixo custo, puro 4-20mA
Sua principal aplicação é a montagem em cabeçotes, permitindo facilmente instalação e conexões com sensores, com comunicação proprietária via USB e com baixo custo. Exemplo: VTT01-1(isolado) e VTT01-2(não isolado), ambos da Vivace.

Figura 6 – VTT01
 

Em termos de protocolos, como com qualquer outro equipamento de campo, o predomínio no mercado é por protocolos abertos, como HART, Profibus-PA e Foundation Fieldbus.


EXEMPLO DE UM TRANSMISSOR HART 7 / 4-20 mA - VTT10-FH

Vejamos a figura 7, onde temos o diagrama de blocos do transmissor de temperatura HART 7 da Vivace.
 
Figura 7 – Diagrama de blocos do transmissor VTT10-FH

 
Este transmissor possui as seguintes características: 
  • Entrada Universal com ampla escolha de sensores: RTDs padrões, Termopares padrões, ohm, mV e sinal 4-20mA, como um isolador 
  • Medição Simples ou Diferencial: 2, 3 ou 4 fios e sensor backup 
  • Isolado
  • Compensação de junta fria
  • Compensação de resistência de linha
  • Linerarização
    • 0.01% de precisão básica
    • 4-20mA + Protocolo HART 7
  • Re-range
  • Autodiagnostico
  • Detecção de Burn-out
  • Fácil upgrade para Profibus-PA
  • Display de 5 dígitos, rotativo (permite 4 posições de montagem), com bargraph
  • Montagem em campo
  • À prova de explosão e tempo
  • Intrinsecamente Seguro
  • Alta Imunidade a EMI e RF
  • Robusto
  • Ajuste local 
  • Corrente de saída de acordo com a NAMUR-NE43
  • Proteção de escrita
  • Verdadeira carcaça com duplo compartimento

Benefícios:
  • Baixo custo com manutenção
    • Auto diagnóstico 
    • Somente um modelo de sobressalente para estoque: um único transmissor para qualquer aplicação e ampla faixa e tipos de sensores
  • Baixo custo de instalação
    • Configuração remota ou local e fácil calibração (re-range)
    • Flexibilidade, um único transmissor para qualquer aplicação e ampla faixa e tipos de sensores
  • Redução dos custos de produção
    • Redução do tempo de paradas (process downtime)
    • Melhor uniformidade da produção
    • Redução da variabilidade dos processos: economia de matéria-prima e melhor qualidade final do produto devido à alta exatidão e estabilidade.

Figura 8 – VTT10-FH e rotação do LCD



Figura 9 – VTT10-FH e Ajuste Local




CONCLUSÃO

Vimos através deste artigo a importância da medição de temperatura na automação e controle de processos, um pouco da história da medição de temperatura e dos avanços tecnológicos dos transmissores de temperatura, assim como as quatro tendências de transmissores, suas aplicações e benefícios.

O conteúdo deste artigo foi elaborado cuidadosamente. Entretanto, erros não podem ser excluídos e assim nenhuma responsabilidade poderá ser atribuída ao autor. Sugestões de melhorias podem ser enviadas ao e-mail cesar.cassiolato@vivaceinstruments.com.br.


Sobre os autores

César Cassiolato
Presidente e Diretor de Qualidade da Vivace Process Instruments. É também Conselheiro Administrativo da Associação PROFIBUS Brasil América Latina desde 2011, onde foi Presidente de 2006 a 2010, Diretor Técnico do Centro de Competência e Treinamento em PROFIBUS, Diretor do FDT Group no Brasil e Engenheiro Certificado na Tecnologia PROFIBUS e Instalações PROFIBUS pela Universidade de Manchester.

Marco Antonio Graton
Engenheiro Eletrônico e Gerente de Projetos da Vivace Process Instruments.


Referências